• Title/Summary/Keyword: Mersenne prime

Search Result 5, Processing Time 0.017 seconds

MERSENNE PRIME FACTOR AND SUM OF BINOMIAL COEFFICIENTS

  • JO, GYE HWAN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.61-68
    • /
    • 2022
  • Let Mp := 2p - 1 be a Mersenne prime. In this article, we find integers a, b, c, d, e and n satisfying $\sum_{t=0}^{n}\;\({an+b\\ct+d}\)\;=\;M_{p^e}$ given a Mersenne prime number Mp. In order to find a special case that satisfies the above results, we reprove an well-known relation of a certain sum of binomial coefficients and a divisor function.

A CLASS OF NEW NEAR-PERFECT NUMBERS

  • LI, YANBIN;LIAO, QUNYING
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.751-763
    • /
    • 2015
  • Let ${\alpha}$ be a positive integer, and let $p_1$, $p_2$ be two distinct prime numbers with $p_1$ < $p_2$. By using elementary methods, we give two equivalent conditions of all even near-perfect numbers in the form $2^{\alpha}p_1p_2$ and $2^{\alpha}p_1^2p_2$, and obtain a lot of new near-perfect numbers which involve some special kinds of prime number pairs. One kind is exactly the new Mersenne conjecture's prime number pair. Another kind has the form $p_1=2^{{\alpha}+1}-1$ and $p_2={\frac{p^2_1+p_1+1}{3}}$, where the former is a Mersenne prime and the latter's behavior is very much like a Fermat number.

ON DECOMPOSABILITY OF FINITE GROUPS

  • Arhrafi, Ali-Reza
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.479-487
    • /
    • 2004
  • Let G be a finite group and N be a normal subgroup of G. We denote by ncc(N) the number of conjugacy classes of N in G and N is called n-decomposable, if ncc(N) = n. Set $K_{G}\;=\;\{ncc(N)$\mid$N{\lhd}G\}$. Let X be a non-empty subset of positive integers. A group G is called X-decomposable, if KG = X. In this paper we characterise the {1, 3, 4}-decomposable finite non-perfect groups. We prove that such a group is isomorphic to Small Group (36, 9), the $9^{th}$ group of order 36 in the small group library of GAP, a metabelian group of order $2^n{2{\frac{n-1}{2}}\;-\;1)$, in which n is odd positive integer and $2{\frac{n-1}{2}}\;-\;1$ is a Mersenne prime or a metabelian group of order $2^n(2{\frac{n}{3}}\;-\;1)$, where 3$\mid$n and $2\frac{n}{3}\;-\;1$ is a Mersenne prime. Moreover, we calculate the set $K_{G}$, for some finite group G.

SIMPLICITY OF GROUPS OF EVEN ORDER

  • Choi, Minjung;Park, Seungkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.427-431
    • /
    • 2014
  • In this paper, we show that groups of order $2^npq$, where p, q are primes of the from $p=2^n-1$, $q=2^{n-1}+p$ with $n{\geq}3$, are not simple and groups of order $2^npq^t$ for $t{\geq}2$, where p, q are odd primes of the form $p=2^m-1$, $q=2^n-1$ with m < n, are not simple.

The Most Efficient Extension Field For XTR (XTR을 가장 효율적으로 구성하는 확장체)

  • 한동국;장상운;윤기순;장남수;박영호;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.17-28
    • /
    • 2002
  • XTR is a new method to represent elements of a subgroup of a multiplicative group of a finite field GF( $p^{6m}$) and it can be generalized to the field GF( $p^{6m}$)$^{[6,9]}$ This paper progress optimal extention fields for XTR among Galois fields GF ( $p^{6m}$) which can be aplied to XTR. In order to select such fields, we introduce a new notion of Generalized Opitimal Extention Fields(GOEFs) and suggest a condition of prime p, a defining polynomial of GF( $p^{2m}$) and a fast method of multiplication in GF( $p^{2m}$) to achieve fast finite field arithmetic in GF( $p^{2m}$). From our implementation results, GF( $p^{36}$ )longrightarrowGF( $p^{12}$ ) is the most efficient extension fields for XTR and computing Tr( $g^{n}$ ) given Tr(g) in GF( $p^{12}$ ) is on average more than twice faster than that of the XTR system on Pentium III/700MHz which has 32-bit architecture.$^{[6,10]/ [6,10]/6,10]}$