• Title/Summary/Keyword: Mercury Material Flow

Search Result 9, Processing Time 0.029 seconds

Study on Material Flow Analysis of Mercury in Paint (페인트 중 수은의 물질흐름분석 연구)

  • Cho, Yoon A;Jeong, Mi Jeong;Jeon, Tea Wan;Lee, Hee Sung;Kim, Yong Jun;Yeon, Jin Mo;Cho, Na Hyeon;Shin, Sun Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.180-185
    • /
    • 2017
  • For the management of mercury-containing products, the products were selected to do material flow analysis in preference of not having selected in previous studies. Domestically mercury have been added to pigment for prevention of bacterial growth. So, in this study paint containing pigment was selected as a target. 71 samples of paint products collected in 2014 and data of 38 samples of wastes (dust, sludge, paint) analyzed in 2010 were used in material flow analysis. The result shows that mercury was 0~0.25 mg/kg in products and 0.23~0.69 mg/kg in the wastes. In the material flow analysis, the amount of flow in the process of distribution was 10.06 kg/year, but the amount of flow in disposal like a landfill, incineration and recycling was much than distribution as 25.27 kg/year. It was caused by different sampling period between collecting products and data of wastes. Therefore, It could be possible to be affected from regulation by RoHS like decreasing usage of mercury in paint products or eradicated in the industry. Mercury contents in current paint products are very low to affect discharging to the environment.

Mercury Emission Control in Japan

  • Takiguchi, Hiroaki;Tamura, Tomonori
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • The Minamata Convention on Mercury entered into force on August 16, 2017. It requires Parties to the Convention to control and, where feasible, reduce mercury emissions from the listed sources. To implement the Convention, Japan amended the Air Pollution Control Law and added clauses that force operators to control their mercury emissions below emission limit values (ELVs). The ELVs have been established separately for new and existing sources, targeting the source categories listed in the Convention: coal-fired boilers, smelting and roasting processes used in the production of non-ferrous metals (lead, zinc, copper and industrial gold), waste incineration facilities and cement clinker production facilities. The factors used to establish the ELVs include the present state of mercury emissions from the targeted categories as well as the mercury content in fuels and materials, best available techniques (BATs) and best environmental practices (BEPs) to control and reduce mercury emissions and ELVs or equivalent standards to control mercury emissions in other countries. In this regard, extensive data on mercury emissions from flue gas and the mercury content of fuels and materials were collected and analyzed. The established ELVs range from $8{\mu}g/Nm^3$ for new coal-fired boilers to $400{\mu}g/Nm^3$ for existing secondary smelting processes used in the production of copper, lead and zinc. This paper illustrates the ELVs for the targeted source categories, explaining the rationales and approaches used to set the values. The amended Law is to be enforced on April 1, 2018. From future perspectives, checks of the material flow of mercury, following up on the state of compliance, review of the ELVs and of the measurement and monitoring methods have been noted as important issues.

Simultaneous Determination of Tin, Nickel, Lead, Cadmium and Mercury in Cigarette Material by Solid Phase Extraction and HPLC

  • Hu, Qun;Yang, Guangyu;Ma, Jing;Liu, Jikai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1433-1436
    • /
    • 2003
  • A new method for the simultaneous determination of heavy metal ions in cigarette material by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The cigarette material was digested by microwave digestion. Lead, cadmium, mercury, nickel and tin ions in the digested samples were pre-column derivatized with tetra-(2-chlorophenyl)-porphyrin ($T_2$-CPP) to form color chelates, which were then enriched by solid phase extraction with a $C_{18}$ cartridge. The chelates were separated on a Waters Xterra$^{TM}RP_{18}$ column by gradient elution with methanol (containing 0.05 mol/L pyrrolidine-aceticacid buffer salt, pH = 10.0) and acetone (containin0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0)as mobile phase at a flow rate of 0.5mL/min and analyzed with a photodiode array detector from 350-600 nm. The detection limits of lead, cadmium, mercury, nickel and tin were 4,3,3,8 and 5 ng/L, respectively, in the original samples. This method was afforded good results.

Determination of Mercury in Fly Ash by Using Flow Injection Cold Vapor Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Suh, Jung-Ki;Min, Hyung-Sik;Kamruzzaman, Mohammad;Lee, Sang-Hak
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.58-61
    • /
    • 2012
  • A method based on flow injection-isotope dilution-cold vapor-inductively coupled plasma mass spectrometry (FI-IDCV-ICP/MS) has been applied to determine trace level of mercury in fly ash. $^{200}Hg$ isotopic spike was added to 0.25 g of BCR176R fly ash and then decomposed by microwave digestion procedure with acid mixture A (8 mL $HNO_3$ + 2 mL HCl + 2 mL HF) and acid mixture B (8 mL $HNO_3$ + 2 mL $HClO_4$ + 2 mL HF) for applying IDMS. Mercury cold vapor was generated by using reductant solution of 0.2% (w/w) $NaBH_4$ and 0.05% (w/w) NaOH. The measurements of n($^{200}Hg$)/n($^{202}Hg$) isotope ratio was made using a quadrupole ICP/MS system. The accuracy in this method was verified by the analysis of certified reference material (CRM) of fly ash (BCR 176R). The indicative value of Hg in BCR 176R fly ash was $1.60{\pm}0.23$ mg/kg (k = 2). The determined values of Hg in BCR 176R fly ash by the method of FI-CV-ID-ICP/MS described in this paper were $1.60{\pm}0.24$ mg/kg (k = 3.18) and the analysis results were in well agreement with the indicative value within the range of uncertainty.

The Influences of Cement Mortar Replaced by Paper Sludge Ash and Blast Furnace Slag (제지 슬러지 애쉬 고로슬래그 미분말로 혼합치환한 시멘트가 모르타르에 미치는 영향)

  • 소병현;이주나;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-9
    • /
    • 2002
  • Paper sludge ash was assured as material of a sort of pozzolan. For the reason of fluidity decrease caused by the strong absorption of paper stooge ash and the decrease of compressive strength in case of using over30% replacement by the weight of cement, paper sludge ash is not suitable for blending material. Therefore, it is necessary to find proper replacement ratios between paper sludge and blast furnace slag to insure compressive compensation and appropriate slump. Accordingly, as varied the blending ratios of paper sludge and blast furnace slag, testing mortar was made. This study was aimed to investigate the possibility of using blending replacement of paper sludge ash and blast furnace slag throughout compressive test, flow test, SEM(Scanning Eletron Microscope), MIP(Mercury Intrusion Porosity test), and TG-DTA(Thermal analysis).

  • PDF

The Study of the Electroconductive Liquids Flow in a Conduction Magnetohydrodynamic Pump

  • Naceur, Sonia;Kadid, Fatima Zohra;Abdessemed, Rachid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.252-256
    • /
    • 2016
  • This paper deals the study of a linear MHD pump solution used to eliminate and to avoid the dangers of the mercury appearing through pollution and contamination. The formulation of the magnetohydrodynamic phenomena is derived from Maxwell and Navier-Stokes equations are solved using the finite volume method. Simulation results highlight the performance of the pump such as the electromagnetic force, the velocity, and the pressure, the application of Ansys-Fluent software validation these results.

Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.548-556
    • /
    • 2016
  • Recently, porous alumina-based ceramics have been extensively applied in the semi-conductor and display industries, because of their high mechanical strength, high chemical resistance, and high thermal resistance. However, the high electrical resistance of alumina-based ceramics has a negative effect in many applications due to the generation of static electricity. The low electrical resistance and high air permeability are key aspects in using porous alumina-based ceramics as vacuum chucks in the semi-conductor industry. In this study, we tailored the pore structure of porous alumina-based ceramics by adjusting the mixing ratio of the starting alumina, which has different particle sizes. And the electrical resistance was controlled by using chemical additives. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimetry, capillary flow porosimetry, a universal testing machine, X-ray diffraction, and a high-resistance meter.

The Effect of MnO2 Content on the Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.331-339
    • /
    • 2017
  • Porous alumina-based ceramics are of special interest due to their outstanding mechanical properties and their thermal and chemical stability. Nevertheless, the high electrical resistance of alumina-based ceramics, due to the generation of static electricity, leads to difficulty in applying a vacuum chuck in the semi-conductor process. Therefore, development of alumina-based ceramics for applications with vacuum chucks aims to have primary properties of low electrical resistance and high air permeability. In this study, we tailored the electrical resistance of porous alumina-based ceramics by adjusting the amount of $MnO_2$ (with $TiO_2$ fixed at an amount of 2 wt%) and by using coarse alumina powder for high air permeability. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimeter, capillary flow porosimetry, universal testing machine, X-ray diffraction and high-resistance meter.

A study on the shape and decorative techniques of earpick during the Goryeo-Joseon Period (고려~조선시대 귀이개 형태와 장식기법)

  • KIM, Jihyeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.6-21
    • /
    • 2022
  • This paper examines the material culture of the Goryeo-Joseon Period through changes in the design and crafting of the earpick. In Chapter 2, terminology regarding earpicks is presented, and the culture of using earpicks is examined through fragmentary literature of the late Joseon Dynasty. Earpicks were first a personal hygiene tool, and, secondly, they played a symbolic role as a style accessory used by men, analogous to the fan carried by women of the time. In Chapter 3, earpick form are classified by period, and characteristic decorative techniques for each form are examined. During the Goryeo Dynasty, earpicks were sanitary tools, and, according to their form, they were classified into single and complex types. From Unified Silla to Goryeo, there is an angled type of connecting rod, and in the Goryeo period, there appeared earpicks with colorful decorations on the handle, completely forged earpicks with a thin and long shape, and earpicks which were part of multitools. Common decorative techniques include line expression, gold plating, cheophomun on the background, and inlay. Earpicks of the Joseon Dynasty are classified into sanitary tools or ornaments, according to their purpose of use. Sanitary tools are divided into single type and complex type, and earpicks used as ornaments include headdress, norigae, and sunchu. For earpick accessories, headdresses and norigae were used for women, and sunchu was used for men. The decorative techniques of earpicks during the Joseon Dynasty were mainly seen in the headdress earpicks. They were decorated with various colors in the Cloisonné method or bejeweled. Research on everyday tools among crafts is lacking; greater attempts to read the flow of time and approaches to material culture through everyday tools should be made.