DOI QR코드

DOI QR Code

The Effect of MnO2 Content on the Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Ha, Jang-Hoon (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Lee, Jongman (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Powder and Ceramics Division, Korea Institute of Materials Science)
  • Received : 2017.05.31
  • Accepted : 2017.06.30
  • Published : 2017.07.31

Abstract

Porous alumina-based ceramics are of special interest due to their outstanding mechanical properties and their thermal and chemical stability. Nevertheless, the high electrical resistance of alumina-based ceramics, due to the generation of static electricity, leads to difficulty in applying a vacuum chuck in the semi-conductor process. Therefore, development of alumina-based ceramics for applications with vacuum chucks aims to have primary properties of low electrical resistance and high air permeability. In this study, we tailored the electrical resistance of porous alumina-based ceramics by adjusting the amount of $MnO_2$ (with $TiO_2$ fixed at an amount of 2 wt%) and by using coarse alumina powder for high air permeability. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimeter, capillary flow porosimetry, universal testing machine, X-ray diffraction and high-resistance meter.

Keywords

References

  1. I. H. Song, J. H. Ha, M. J. Park, H. D. Kim, and Y. W. Kim, "Effects of Silicon Particle Size on Microstructure and Permeability of Silicon-bonded SiC Ceramics," J. Ceram. Soc. Jpn., 120 [1405] 370-74 (2012). https://doi.org/10.2109/jcersj2.120.370
  2. Y. Seki, S. Kose, T. Kodama, M. Kadota, T. Ogura, K. Tanimoto, and I. Matsubara, "Production Method of Porous Silica Compacts Containing Submicron Pores," J. Ceram. Soc. Jpn., 96 [1117] 920-24 (1988). https://doi.org/10.2109/jcersj.96.920
  3. I. H. Song, I. M. Kwon, H. D. Kim, and Y. W. Kim, "Processing of Microcellular Silicon Carbide Ceramics with a Duplex Pore Structure," J. Eur. Ceram. Soc., 30 [12] 2671-76 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.04.027
  4. R. Ahmad, S. M Anwar, J. Kim, I. H. Song, S. Z. Abbas, S. A. Ali, F. Ali, J Ahmad, H. B. Awais, and M. Mehmood, "Porosity Features and Gas Permeability Analysis of Bimodal Porous Alumina and Mullite for Filtration Applications," Ceram. Int., 42 [16] 18711-17 (2016). https://doi.org/10.1016/j.ceramint.2016.09.009
  5. Y. Okiyama and R. Yamaguchi, "Enhanced Ceramic Material for Precision Alignment Mechanism"; US Patent 10/895,091 (July 21, 2004).
  6. K. J. Jeong, Y. G. Park, Y. S. Lee, T. Y. Cho, and H. G. Chun, "A Study on the Fabrication and Characterization of Alumina Electrostatic Chuck for Silicon Wafer Processing (in Korean)," J. Sensor Sci. & Tech., 8 [6] 481-86 (1999).
  7. K. Toshihiko, "Semiconductive Ceramic and Its Production"; JP Patent, JP1997000360094 (July 13, 1999).
  8. J. S. Reed, Principles of Ceramics Processing; pp. 596, Wiley, New York, 1995.
  9. N. Claussen, T. Le, and S. Wu, "Low-Shrinkage Reaction-bonded Alumina," J. Eur. Ceram. Soc., 5 [1] 29-35 (1989). https://doi.org/10.1016/0955-2219(89)90006-X
  10. J. R, Keski and I. B. Cutler, "Effect of Maganese Oxide on Sintering of Alumina," J. Am. Ceram. Soc., 48 [12] 653-54 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14703.x
  11. H. Erkalfa, Z. Misirli, and T. Baykara, "The Effect of $TiO_2$ and $MnO_2$ on Densification and Microstructural Development of Alumina," Ceram. Int., 24 [2] 81-90 (1998). https://doi.org/10.1016/S0272-8842(97)00082-5
  12. K. T. Jacob, "Revision of Thermodynamic Data on MnO-$Al_2O_3$ Melts," Can. Metall. Q., 20 [1] 89-92 (1981). https://doi.org/10.1179/cmq.1981.20.1.89
  13. M. Sathiyakumar and F. D. Gnanam, "Influence of MnO and $TiO_2$ Additives on Density, Microstructure and Mechanical Properties of $Al_2O_3$," Ceram. Int., 28 [2] 195-200 (2002). https://doi.org/10.1016/S0272-8842(01)00077-3
  14. S. M. Olhero and J. M. F. Ferreira, "Effect of Different Oxide Additives on Colloidal Processing and Sintering of Alumina," Mater. Sci. Forum., 455-6 216-20 (2004). https://doi.org/10.4028/www.scientific.net/MSF.455-456.216
  15. W. Acchar, D. Schwarze, and P. Greil, "Sintering of $Al_2O_3$-NbC Composites Using $TiO_2$ and MnO Additives: Preliminary Results," Mater. Sci. Eng., A, 351 299-303 (2003). https://doi.org/10.1016/S0921-5093(02)00857-2
  16. I. H. Song, M. J. Park, H. D. Kim, Y. W. Kim, and J. S. Bae, "Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (in Korean)," J. Korean Ceram. Soc., 47 [6] 546-52 (2010). https://doi.org/10.4191/KCERS.2010.47.6.546
  17. K. S. Cho, H. K. Lee, Y. I. Park, and M. Y. Kim "Electrical Properties of Large Alumina Ceramics Prepared by Various Processing (in Korean)," J. Korean Ceram. Soc., 49 [2] 179-84 (2012). https://doi.org/10.4191/kcers.2012.49.2.179
  18. H. J. Kim, Y. G. Shin, H. K. Ahn, and D. W. Kim, "A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern (in Korean)," J. Korean Inst. Surf. Eng., 44 [4] 165-71 (2011). https://doi.org/10.5695/JKISE.2011.44.4.165
  19. T. Watanabe, T. Kitabayashi, and C. Nakayama, "Relationship between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck," Jpn. J. Appl. Phys., 32 [2] 864-71 (1993). https://doi.org/10.1143/JJAP.32.864
  20. A. Guidara, K. Chaari, and J. Bouaziz, "Effect of Titania Additive on Structural and Mechanical Properties of Alumina-Fluorapatite Composites," J. Mater. Sci. Technol., 28 [12] 1130-36 (2012). https://doi.org/10.1016/S1005-0302(12)60182-0
  21. M. C. Moreira and A. M. Segadaes, "Phase Equilibrium Relationships in the System $Al_2O_3-TiO_2$-MnO, Relevant to the Low-temperature Sintering of Alumina," J. Eur. Ceram. Soc., 16 [10] 1089-98 (1996). https://doi.org/10.1016/0955-2219(96)00024-6
  22. A. Petric and H. Ling, "Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures," J. Am. Ceram. Soc., 90 [5] 1515-20 (2007). https://doi.org/10.1111/j.1551-2916.2007.01522.x
  23. R. S. Singh, T. H. Ansari, and R. A. Singh, "Electrical Conduction in $MnTiO_3$ Single Crystal," Proc. Indian Natl. Sci. Acad., 61 [6A] 425-32 (1995).

Cited by

  1. Thermal resistance of solar volumetric absorbers made of mullite, brown alumina and ceria foams under concentrated solar radiation vol.194, pp.None, 2017, https://doi.org/10.1016/j.solmat.2019.02.008
  2. Alumina ceramics doped with manganese titanate via applying Mn-Ti-O coatings to corundum micropowder vol.57, pp.6, 2017, https://doi.org/10.1007/s43207-020-00076-3
  3. Introducing MnO2 and ZnO Additives for the Development of Alumina-Mullite-Zirconia Composites vol.73, pp.11, 2017, https://doi.org/10.1007/s11837-021-04886-6
  4. Effect of Ni content and its particle size on electrical resistivity and flexural strength of porous SiC ceramic sintered at low-temperature using clay additive vol.47, pp.22, 2017, https://doi.org/10.1016/j.ceramint.2021.08.032