DOI QR코드

DOI QR Code

Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Ha, Jang-Hoon (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Lee, Jongman (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Powder and Ceramics Division, Korea Institute of Materials Science)
  • Received : 2016.06.09
  • Accepted : 2016.08.02
  • Published : 2016.09.30

Abstract

Recently, porous alumina-based ceramics have been extensively applied in the semi-conductor and display industries, because of their high mechanical strength, high chemical resistance, and high thermal resistance. However, the high electrical resistance of alumina-based ceramics has a negative effect in many applications due to the generation of static electricity. The low electrical resistance and high air permeability are key aspects in using porous alumina-based ceramics as vacuum chucks in the semi-conductor industry. In this study, we tailored the pore structure of porous alumina-based ceramics by adjusting the mixing ratio of the starting alumina, which has different particle sizes. And the electrical resistance was controlled by using chemical additives. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimetry, capillary flow porosimetry, a universal testing machine, X-ray diffraction, and a high-resistance meter.

Keywords

References

  1. S. H. Chae, J. H. Eom, Y. W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, "Porosity Control of Porous Zirconia Ceramics," J. Korean Ceram. Soc., 45 [1] 65-8 (2008). https://doi.org/10.4191/KCERS.2008.45.1.065
  2. Y. Seki, S. Kose, T. Kodama, M. Kadota, T. Ogura, K. Tanimoto, and I. Matsubara, "Production Method of Porous Silica Compacts Containing Submicron Pores," J. Ceram. Soc. Jpn., 96 [9] 920-24 (1988). https://doi.org/10.2109/jcersj.96.920
  3. J. F. Zievers, P. Eggerstedt, and E. C. Zievers, "Porous Ceramics for Gas Filtration," Am. Ceram. Soc. Bull., 70 [1] 108-11 (1991).
  4. K. Y. Lim, Y. W. Kim, I. H. Song, H. D. Kim, and J. S. Bae, "Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-bonded $Al_2O_3$ Ceramics," J. Korean Ceram. Soc., 47 [6] 529-33 (2010). https://doi.org/10.4191/KCERS.2010.47.6.529
  5. I. H. Song, I. M. Kwon, H. D. Kim, and Y. W. Kim, "Processing of Microcellular Silicon Carbide Ceramics with a Duplex Pore Structure," J. Eur. Ceram. Soc., 30 2671-76 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.04.027
  6. Y. Okiyama and R. Yamaguchi, "Enhanced Ceramic Material for Precision Alignment Mechanism"; US Patent 10/895,091 (July 21, 2004).
  7. C. Furnas, "Grading Aggregates-I. Mathematical Relations for Beds of Broken Solids of Maximum Density," Ind. Eng. Chem., 23 [9] 1052-58 (1931). https://doi.org/10.1021/ie50261a017
  8. S. Kwon and G. L. Messing, "Constrained Densification in Boehmite-Alumina Mixtures for the Fabrication of Porous Alumina Ceramics," J. Mater. Sci., 33 913-21 (1998). https://doi.org/10.1023/A:1004347425011
  9. A. Kritikaki and A. Tsetsekou, "Fabrication of Porous Alumina Ceramics from Powder Mixtures with Sol-gel Derived Nanometer Alumina: Effect of Mixing Method," J. Eur. Ceram. Soc., 29 1603-11 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.10.011
  10. I. H. Song, M. J. Park, H. D. Kim, Y. W. Kim, and J. S. Bae, "Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content," J. Korean Ceram. Soc., 47 [6] 546-52 (2010). https://doi.org/10.4191/KCERS.2010.47.6.546
  11. J. Li, Y. Pan, F. Qiu, L. Huang, and J. Guo, "Alumina Ceramics Fabricated from Bimodal Alumina with Additives," J. Mater. Sci. Eng. A, 435 611-19 (2006).
  12. R. M. German, "Prediction of Sintered Density for Bimodal Powder Mixtures," Metall. Trans. A, 23 [5] 1455-65 (1992). https://doi.org/10.1007/BF02647329
  13. R. K. McGeary, "Mechanical Packing of Spherical Particles," J. Am. Ceram. Soc., 44 [10] 513-22 (1962). https://doi.org/10.1111/j.1151-2916.1961.tb13716.x
  14. K. S. Cho, H. K. Lee, Y. I. Park, and M. Y. Kim "Electrical Properties of Large Alumina Ceramics Prepared by Various Processing," J. Korean Ceram. Soc., 49 [2] 179-84 (2012). https://doi.org/10.4191/kcers.2012.49.2.179
  15. M. C. Moreira and A. M. Segadaes, "Phase Equilibrium Relationships in the System $Al_2O_3-TiO_2-MnO$, Relevant to the Low-Temperature Sintering of Alumina," J. Eur. Ceram. Soc., 16 1089-98 (1996). https://doi.org/10.1016/0955-2219(96)00024-6
  16. A. Guidara, K. Chaari, and J. Bouaziz, "Effect of Titania Additive on Structural and Mechanical Properties of Alumina-Fluorapatite Composites," J. Mater. Sci. Technol., 28 [12] 1130-36 (2012). https://doi.org/10.1016/S1005-0302(12)60182-0
  17. H. J. Kim, Y. G. Shin, H. K. Ahn, and D. W. Kim, "A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern," J. Kor. Inst. Surf. Eng., 44 [4] 165-71 (2011). https://doi.org/10.5695/JKISE.2011.44.4.165
  18. K. J. Jeong, Y. G. Park, Y. S. Lee, T. Y. Cho, and H. G. Chun, "A Study on the Fabrication and Characterization of Alumina Electrostatic Chuck for Silicon Wafer Processing," J. Sensor Sci. & Tech., 8 [6] 481-86 (1999).
  19. T. Watanabe, T. Kitabayashi, and C. Nakayama, "Electrostatic Force and Absorption Current of Alumina Electrostatic Chuck," Jpn. J. Appl. Phys., 31 [7] 2145-50 (1992). https://doi.org/10.1143/JJAP.31.2145
  20. I. H. Bang, K. O. Kim, and S. J. Lee, "Fabrication and Characteristics of Black Alumina for LCD Photo Processing Material," J. Ceram. Process. Res., 15 [6] 525-29 (2014).
  21. O. A. Bulavchenko, S. V. Tsybulya, P. G. Tsyrul'nikov, T. N. Afonasenko, S. V. Cherepanova, and E. Yu. Gerasimov, "Chemical and Structural Transformations in Mananese Aluminum Spinel of the Composition $Mn_{1.5}A_{1.5}O_4$ During Heating and Cooling in Air," J. Struct. Chem., 51 [3] 500-6 (2010). https://doi.org/10.1007/s10947-010-0072-5
  22. A. Petric and H. Ling, "Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures," J. Am. Ceram. Soc., 90 [5] 1515-20 (2007). https://doi.org/10.1111/j.1551-2916.2007.01522.x
  23. R. S. Singh, T. H. Ansari, and R. A. Singh, "Electrical Conduction in $MnTiO_3$ Single Crystal," Proc. Indian Natl. Sci. Acad., 61 [6A] 425-32 (1995).