• Title/Summary/Keyword: Membrane stiffness

Search Result 105, Processing Time 0.019 seconds

An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures (복합적층구조 해석을 위한 개선된 쉘요소)

  • Choi, Chang Koon;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.1-10
    • /
    • 1991
  • The paper is concerned with the analysis of laminated composite shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements. The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

A Study on Physical and Mechanical Properties of Breathable Waterproof Fabrics Manufactured with PTFE Membrane-fabric Composite (PTFE막-직물 복합체로 제조된 투습방수직물의 물성 및 역학특성에 관한 연구)

  • Jeong, Won-Young;An, Seung-Kook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.12
    • /
    • pp.1685-1693
    • /
    • 2002
  • 다양한 용도로 사용되고 있는 라미네 이 팅 직물은 주로 별도로 제조된 고분자 필름 또는 막을 접착제, 열, 압력 등을 이용하여 기포(基布)와 결합시키는 방법으로 제조되어 진다. 이축연신시킨 Poly(tetrafluoroethylene) (PTFE) sheet는 매우 우수한 높은 투과성을 지니는 다공성 물질이 며, 본 연구에서는 이 막을 나일론 직물에 라미네이팅시킨 투습방수직물을 시료로 사용하여 라미네이팅 후의 역학특성 변화를 분석 하였다. 라미네이팅에 따른 투습방수직물의 물성과 역학특성의 변화에 관하여 살펴본 결과 다음과 같은 결과를 얻었다. 3-layer 라미네이팅 직물(base fabric-PTFE membrane-knitted lining)의 인열강도는 2-layer라미네이팅 직물 (base fabric-PTFE membrane)에 비해 매우 높게 나타났으며, 가공 전 직물과 비교하여 코팅직물에서 나타난 것과 같은 인열강도의 감소는 나타나지 않았다. 직물-PTFE 막 복합체 의 경우, 라미네 이 팅 이 파단강도 및 파단신도 의 증가에 기여 한 것으로 나타났으며 특히 3-layer 라미네이팅 직물의 경우, 신장률이 20%를 넘어서면서 강도가 현저히 증가하였다. 의복을 착용하였을 때 가해질 수 있을 정도의 소변형(small deformation) 하에서의 역학특성 에 있어서는 라미네이팅에 의해 전단특성이 가장 유의한 변화를 나타내었다. 전단강성(G)과 전단 히스테리시스 (2HG,2HG5)모두 증가하였고, primary hand value 중에서는 stiffness 가장 현저한 증가를 나타내었다

Form-finding of Free-form Membrane Structure based on Geometrically Non-linear Analysis and Interface method (기하학적 비선형해석을 이용한 비정형 막 구조물의 형상탐색과 인터페이스 기법)

  • Kim, Jee-In;Na, Yoo-Mi;Kang, Joo-Won;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The membrane structure maintains stable form by giving initial tension to ductile membrane and increasing the stiffness of exterior that is much adopted in the large span spatial structure by making its thickness thin. This kind of membrane structure has characteristic that can express free-form curve, so the selection of structural form is very important. So, this paper proposes the expression of free-form surface based on NURBS basis function and the finite element method considering geometrical nonlinearity for the deduction of large deformation result. Also, for minimizing the approximation of the surface that is derived from the form-finding result, the interface method that change finite element mesh to NURBS is proposed. So, the optimum surface of free-form membrane is derived.

Numerical Analysis on the Stress and Deformation Characteristics of LNG Membrane Storage Tank System with Corner Protection (코너프로텍션 설치에 따른 멤브레인 LNG 저장탱크 시스템의 응력 및 변형거동 특성에 관한 수치해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.9-14
    • /
    • 2009
  • In this study, the stress and deformation characteristics of corner protection in which is fabricated in an insulation area have been analyzed using a finite element method. The proposed corner protection may increase the strength and leakage safeties of conventional LNG storage system. The stress and deformation of LNG storage tank system are computed for an insulation panel box, membrane inner tank, and prestressed concrete outer tank. The FEM computed results indicate that the stress and displacement of new membrane LNG tank system with a corner protection between an inner tank and an outer tank are reduced in comparison to those of a conventional membrane LNG tank. This is explained that the strength safety of LNG membrane tank system may be increased due to a strength stiffness of a corner protection.

  • PDF

Shape Finding Analysis of Pneumatic Structure (공기막 구조물의 형상해석)

  • 권택진;서삼열;이장복
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.57-64
    • /
    • 1994
  • The purpose of this paper is to find minimum surface shape of pneumatic structure using the finite element method. The pneumatic membrane structure is a kind of large deformation problem and very flexible composite material, which mean geomatric nonlinearity. It is not to resist for compression and resultant moment. As the displacement due to internal pressure is getting bigger, it should be considered the direction of forces. It becomes non-linear problem with the non-conservative force. The follower-force depends on the deformation and the direction of force is normal to each element. The solution process is obtained the new stiffness matrix (load correction matrix) depending on deformation through each iterated step. However, the stiffness matrix have not the symmetry and influence on the time of covergence. So in this paper Newton-Rhapson method for solving non-linear problem and for using symmetic matrix, the load direction is changed in each iterated step using the transformation matrix.

  • PDF

Effect of Thickness Change in Corrugations on the Stiffness and Vibration Characteristics of a Thermoformed Diaphragm (열성형 진동판의 미세주름 두께변화가 구조강성 및 진동특성에 미치는 영향 분석)

  • Kim, K.M.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Recently, micro-speakers have attracted much attention due to their increasing demand in mobile devices. Micro-speakers use polymer diaphragms, which are manufactured from thin polymer film by the thermoforming process. The diaphragm is generally designed to be a circular membrane with a cross section consisting of a double dome structure, and a number of corrugations are located in the outer region to produce better sound quality. In the current study, a finite element (FE) analysis is performed for thermoforming, and the resulting thickness reduction in the corrugation regions is estimated. The estimated thickness distribution is used in further structural and modal FE analyses, from which the effects of local thickness reduction on the stiffness and vibration characteristics are determined.

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-ll;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

An analysis of the farm silo supported by ground (地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 -)

  • Cho, Jin-Goo;Cho, Hyun-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF