• Title/Summary/Keyword: Membrane association protein

Search Result 118, Processing Time 0.022 seconds

Different Phosphate Transport in the Duodenum and Jejunum of Chicken Response to Dietary Phosphate Adaptation

  • Fang, Rejun;Xiang, Zhifeng;Cao, Manhu;He, Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1457-1465
    • /
    • 2012
  • Intestinal phosphate (Pi) absorption across the apical membrane of small intestinal epithelial cells is mainly mediated by the type IIb Na-coupled phosphate co-transporter (NaPi-IIb), but its expression and regulation in the chicken remain unclear. In the present study, we investigated the mRNA and protein levels of NaPi-IIb in three regions of chicken small intestine, and related their expression levels to the rate of net phosphate absorption. Our results showed that maximal phosphate absorption occurs in the jejunum, however the highest expression levels of NaPi-IIb mRNA and protein occurs in the duodenum. In response to a low-Pi diet (TP 0.2%), there is an adaptive response restricted to the duodenum, with increased brush border membrane (BBM) Na-Pi transport activity and NaPi-IIb protein and mRNA abundance. However, when switched from a low-(TP 0.2%) to a normal diet (TP 0.6%) for 4 h, there is an increase in BBM NaPi-IIb protein abundance in the jejunum, but no changes in BBM NaPi-IIb mRNA. Therefore, our study indicates that Na-Pi transport activity and NaPi-IIb protein expression are differentially regulated in the duodenum vs the jejunum in the chicken.

Nonspecific Association of a 17 kDa Isoform of the Myelin Basic Protein with the Postsynaptic Density Fraction

  • Moon, Il-Soo
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.276-278
    • /
    • 2000
  • The postsynaptic density (PSD), a large protein complex beneath the postsynaptic membrane, is notorious for its 'stickiness'. In order to understand the molecular composition of the PSD fraction, a 17 kDa protein band was isolated by electroelution from SDS-geis, and its partial amino acid sequence was determined from HPLC-purified tryptic peptides of the protein. Surprisingly, the amino acid sequence was identical to that of the previously reported 17 kDa isoform of the myelin basic protein (MBP), an essential protein in CNS myelin formation. Since the protein band represented ~2% of the total proteins in the 1 % n-octyl glucoside-insoluble PSD fraction, these results indicate that a significant amount of the 17 kDa isoform of MBP is tightly associated with the PSD during preparation of the PSD fraction.

  • PDF

Study on Extraction of Mucopolysaccharide-protein Containing Chondroitin Sulfate from Chicken Keel Cartilage

  • Shin, S.C.;You, S.J.;An, B.K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.601-604
    • /
    • 2006
  • The objective of this study was to investigate technical methods for extraction of mucopolysachharide-protein containing chondroitin sulfate from keel cartilage of chickens. The chemical composition of chicken keel cartilage was determined. For the preparation of mucopolysaccharide-protein from lyophilized chicken keel cartilage, hot water extraction and alcalase hydrolysis methods were examined. Results showed that the optimum condition of hot water extraction was incubation for 120 min with a yield of 40.09% and chondroitin sulfate content of 28.46%. For alcalase hydrolysis, the most effective condition was 2% alcalase in 10 volumes of distilled water for 120 min. The yield of hydrolysate was 75.87%, and chondroitin sulfate content was 26.61%. For further separation of chondroitin sulfate from the alcalase hydrolysate, which has a higher yield than that of hot water, 60% ethanol precipitation was performed. The yield of the ethanol precipitate was 21.41% and its chondroitin sulfate content was 46.31%. The hot water extract, alcalase hydrolysate and ethanol precipitate showed similar electrophoretic migration with standard chondroitin sulfate (chondroitin sulfate A), using cellulose acetate membrane electrophoresis. These results indicated that a significant amount of mucopolysaccharide-protein containing chondroitin sulfate could be acquired form chicken keel cartilage. Therefore, keel cartilage in chicken may provide an inexpensive source of chondroitin sulfate for commercial purposes.

Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans

  • Cho, Injeong;Hwang, Gyu Jin;Cho, Jeong Hoon
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.680-686
    • /
    • 2016
  • Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans. A ucp-4 mutant showed increased mitochondrial membrane protential in association with increased neuronal defects during aging, and the neurons of ucp-4 overexpressing animals showed decreased neuronal defects during aging. These results suggest that UCP-4 may be involved in neuroprotection during aging via relieving mitochondrial membrane protential. We also investigated the relationship between UCP-4 and innate immunity because increased ROS can affect innate immunity. ucp-4 mutant displayed increased resistance to the pathogen Staphylococcus aureus compared to wild type. The enhanced immunity in the ucp-4 mutant could be related to increased mitochondrial membrane protential, presumably followed by increased ROS. In summary, UCP-4 might have an important role in neuronal aging and innate immune responses through mediating mitochondrial membrane protential.

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

경구투여 백신 후보물질로서의 Helicobacter pylori 외막 단백질의 조사

  • 박형배;최태부
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1997
  • Helicobacter pylori is a spiral-shaped, microaerophilic human gastric pathogen causing chronic-active gastritis in association with duodenal ulcer and gastric cancer. To investigate the possibility of H. pylori outer membrane proteins (OMPS) as the oral vaccine antigens, sarcosine-insoluble outer membrane fraction has been prepared from H. pylori NCTC 11637. The major OMPs having apparent molecular masses of 62 kDa, 54 kDa and 33 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which were identified as urease B subunit (UreB), heat shock protein (Hsp54 kDa) and urease A subunit (UreA), respectively. Minor protein bands of 57 kDa, 52 kDa, 40 kDa, 36 kDa and 31 kDa were also observed. The antigenicity of H. pylori OMPs and antigenic cross-reactivity among the strains were determined by immunoblot analysis using anti-H. pylori OMPs antisera or intestinal lavage solutions. The results showed that UreB, Hsp54 kDa, UreA and 40 kDa proteins vigorously stimulated mucosal immune response rather than systemic immunity. From this results, these proteins seemed to be useful as the antigen candidates for the oral vaccine. The immunoblotting results with surface proteins from eight isolated H. pylori strains were similar to that of H. pylori NCTC 11637. The IgA which had been arised from oral administration of H. pylori OMPs, was able to bind H. pylori whole-cells.

  • PDF

A WD40 Repeat Protein, Arabidopsis Sec13 Homolog 1, May Play a Role in Vacuolar Trafficking by Controlling the Membrane Association of AtDRP2A

  • Lee, Myoung Hui;Lee, Sung Hoon;Kim, Heyran;Jin, Jing Bo;Kim, Dae Heon;Hwang, Inhwan
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.210-219
    • /
    • 2006
  • Dynamin-related protein 2A (AtDRP2A, formally ADL6), a member of the dynamin family, is critical for protein trafficking from the TGN to the central vacuole. However, the mechanism controlling its activity is not well understood in plant cells. We isolated Arabidopsis sec13 homolog1 (AtSeh1) that interacts with AtDRP2A by a yeast two-hybrid screening. AtSeh1 has four WD40 motifs and amino acid sequence homology to Sec13, a component of COPII vesicles. Coimmunoprecipitation and protein pull-down experiments demonstrated specific interaction between AtSeh1 and AtDRP2A. AtSeh1 bound to the pleckstrin homology domain of AtDRP2A in competition with the C-terminal domain of the latter, and this resulted in inhibition of the interaction between AtDRP2A and PtdIns3P in vitro. AtSeh1 localized to multiple locations: the nucleus, the prevacuolar compartment and the Golgi complex. Based on these results we propose that AtSeh1 plays a role in regulating cycling of AtDRP2A between membrane-bound and soluble forms.

Understanding of Interactions Between Acanthamoeba and Escherichia coli on Cell-Based System

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.173-176
    • /
    • 2011
  • Free-living Acanthamoeba are eukaryotic protozoan organisms that are widely distributed in the air, water, etc such as environment. Acanthamoeba ingest the Escherichia coli which will replicate in cytoplasm of Acanthamoeba. Bacterial pathogenicity or virulence is one of important determinant factors to survive in free-living Acanthamoeba and otherwise Acanthamoebic pathogenicity is also an important factor for their interactions. Bacterial association with pathogenic strain of Acanthamoeba T1 and T4 was lower about two times than non-pathogenic T7. Bacterial invasion percentages into T1 were higher about three times than T7 but bacterial survival in T7 was increased as T1. The capsule-deletion mutant exhibited limited ability for invasion/uptake by and survival inside pathogenic Acanthamoeba T4. E. coli-outer membrane protein A (OmpA) decreased bacterial association with A. castellanii by about three times and it had higher effects than lipopolysaccharides (LPS). Under favorable conditions, the mutants were not survived in Acanthamoeba up to 24 h incubation. Therefore, this review will report pathogenic and non-pathogenic Acanthamoeba strains interactions with E. coli and its several mutants, i.e., capsule, OmpA and LPS.

Modulation of Cytochrome c-Membrane Interaction by the Physical State of the Membrane and the Redox State of Cytochrome c

  • Kim, Uk Cheon;Kim, Yu Sin;Han, Sang Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.412-418
    • /
    • 2000
  • Association of cytochrome c with anionic membranes involved both electrostatic and hydrophobic interactions and their relative contributions depended on the physical state of the membrane and the redox state of cyto-chromec.Hydrophobic interaction was favored by the membranes in gel phase, by the membranes with a large curvature, and by the membranes with a high surface charge density. Ferrocytochrome c was less dissociable by NaCl than ferricytochrome c suggesting that a lower protein stability is beneficial for hydrophobic interac-tion.Hydrophobic interaction induced larger structural perturbations on cytochrome c as monitored by the loss of the Fe-Met bond and by the increase in the distance between heme and Trp-59. When bound to anionic mem-branes,spin-labeled cytochrome c showed an electron paramagnetic resonance spectrum with two or more components, providing a direct evidence for multiple conformations of bound cytochrome c.

Expression levels of filaggrin-2 in relation to drip loss in pigs

  • Kayan, Autchara;Koomkrong, Nunyarat
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.624-630
    • /
    • 2022
  • Objective: The aim of this study was to investigate the expression level of filaggrin-2 (FLG2) in correlation with drip loss. Methods: The muscle samples were randomly taken from a local meat supplier. Samples were taken from Longissimus lumborum muscles to evaluate the drip loss (n = 100). Five muscles per group (low and high drip loss) were selected to evaluate FLG2 mRNA and protein expression levels. Results: mRNA of FLG2 gene was not significantly different in pigs with different levels of drip loss (p>0.05). Statistical analysis revealed that FLG2 protein expression levels were significantly different between the drip loss groups. Western blot revealed that the high drip loss group had higher FLG2 protein expression level than the low drip loss group (p<0.001). Moreover, immunohistochemistry revealed the high signal intensity was on the muscle cell membrane and cytoplasm. Conclusion: FLG2 protein might play roles in drip loss of pork and will provide the basis for information to improving meat quality traits in pigs.