Understanding of Interactions Between Acanthamoeba and Escherichia coli on Cell-Based System

  • Jung, Suk-Yul (Department of Biomedical Laboratory Science, Molecular Diagnosis Research Institute, Namseoul University)
  • Received : 2011.04.21
  • Accepted : 2011.06.21
  • Published : 2011.09.30

Abstract

Free-living Acanthamoeba are eukaryotic protozoan organisms that are widely distributed in the air, water, etc such as environment. Acanthamoeba ingest the Escherichia coli which will replicate in cytoplasm of Acanthamoeba. Bacterial pathogenicity or virulence is one of important determinant factors to survive in free-living Acanthamoeba and otherwise Acanthamoebic pathogenicity is also an important factor for their interactions. Bacterial association with pathogenic strain of Acanthamoeba T1 and T4 was lower about two times than non-pathogenic T7. Bacterial invasion percentages into T1 were higher about three times than T7 but bacterial survival in T7 was increased as T1. The capsule-deletion mutant exhibited limited ability for invasion/uptake by and survival inside pathogenic Acanthamoeba T4. E. coli-outer membrane protein A (OmpA) decreased bacterial association with A. castellanii by about three times and it had higher effects than lipopolysaccharides (LPS). Under favorable conditions, the mutants were not survived in Acanthamoeba up to 24 h incubation. Therefore, this review will report pathogenic and non-pathogenic Acanthamoeba strains interactions with E. coli and its several mutants, i.e., capsule, OmpA and LPS.

Keywords

References

  1. Allen PM, Roberts I, Boulnois GJ, Saunders JR, Hart CA. Contribution of capsular polysaccharide and surface properties to virulence of Escherichia coli K1. Infect Immun. 1987. 55: 2662-2668.
  2. Alsam S, Jeong SR, Sissons J, Dudley R, Kim KS, Khan NA. Escherichia coli interactions with Acanthamoeba: a symbiosis with environmental and clinical implications. J Med Microbiol. 2006. 55: 689-694. https://doi.org/10.1099/jmm.0.46497-0
  3. Barker J, Humphrey TJ, Brown MW. Survival of Escherichia coli O157 in a soil protozoan: implications for disease. FEMS Microbiol Lett. 1999. 15: 291-295.
  4. Bozue JA, Johnson W. Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect Immun. 1996. 64: 668-673.
  5. Garau J, Gomez L. Pseudomonas aeruginosa pneumonia. Curr Opin Infect Dis. 2003. 16: 135-143. https://doi.org/10.1097/00001432-200304000-00010
  6. Gast RJ, Ledee DR, Fuerst PA, Byers TJ. Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. J Eukaryot Microbiol. 1996. 43: 498-504. https://doi.org/10.1111/j.1550-7408.1996.tb04510.x
  7. Ghedin E, Fraser CM. A virus with big ambitions. Trends Microbiol. 2005. 13: 56-57. https://doi.org/10.1016/j.tim.2004.12.008
  8. Horwitz MA. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med. 1983. 158: 2108-2126. https://doi.org/10.1084/jem.158.6.2108
  9. Jung SY, Alsam S, Kim KS, Khan NA. Pathogen-pathogen interactions: a comparative study of Escherichia coli interactions with the clinical and environmental isolates of Acanthamoeba. World J Microbiol Biotechnol. 2008. 24: 2339-2348. https://doi.org/10.1007/s11274-008-9754-y
  10. Jung S, Matin A, Kim KS, Khan NA. The capsule plays an important role in Escherichia coli K1 interactions with Acanthamoeba. Int J Parasitol. 2007. 37: 417-423. https://doi.org/10.1016/j.ijpara.2006.10.012
  11. Khan NA. Acanthamoeba invasion of the central nervous system. Int J Parasitol. 2007. 37: 131-138. https://doi.org/10.1016/j.ijpara.2006.11.010
  12. Khan NA. Acanthamoeba and the blood-brain barrier: the breakthrough. J Med Microbiol. 2008. 57: 1051-1057. https://doi.org/10.1099/jmm.0.2008/000976-0
  13. Kilvington S, Larkin DFP, White DG, Beeching JR. Laboratory investigation of Acanthamoeba keratitis. J Clin Microbiol. 1990. 28: 2722-2725.
  14. Kim KJ, Elliott SJ, Di Cello F, Stins MF, Kim KS. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol. 2003. 5: 245 -252. https://doi.org/10.1046/j.1462-5822.2003.t01-1-00271.x
  15. Kim KS, Itabashi H, Gemski P, Sadoff J, Warren RL, Cross AS. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J Clin Invest. 1992. 90: 897-905. https://doi.org/10.1172/JCI115965
  16. Kong HH, Chung DI. PCR and RFLP variation of conserved region of small subunit ribosomal DNA among Acanthamoeba isolates assigned to either A. castellanii or A. polyphaga. Korean J Parasitol. 1996. 34: 127-134. https://doi.org/10.3347/kjp.1996.34.2.127
  17. Kreger AS. Pathogenesis of Pseudomonas aeruginosa ocular diseases. Rev Infect Dis. 1983. 5: S931-S9355. https://doi.org/10.1093/clinids/5.Supplement_5.S931
  18. Krishna-Prasad BN, Gupta SK. Preliminary report on engulfment and retention of Mycobacterium by trophozoites of axenically grown Acanthamoeba castellanii Douglas. Curr Sci. 1978. 47: 245-247.
  19. La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D. A giant virus in amoebae. Science 2003. 28: 299.
  20. La Scola B, Raoult D. Survival of Coxiella burneti within free living amoeba Acanthamoeba castellanii. Clin Microbiol Infect. 2001. 7: 75-79.
  21. Ly TM, Muller HE. Ingested Listeria monocytogenes survive and multiply in protozoa. J Med Microbiol. 1990. 33: 51-54. https://doi.org/10.1099/00222615-33-1-51
  22. Obritsch MD, Fish DN, MacLaren R, Jung R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 2005. 25: 1353-1364. https://doi.org/10.1592/phco.2005.25.10.1353
  23. Read RC, Zimmerli S, Broaddus C, Sanan DA, Stephens DS, Ernst JD. The (alpha2->8)-linked polysialic acid capsule of group B Neisseria meningitidis modifies multiple steps during interaction with human macrophages. Infect Immun. 1996. 64: 3210-3217.
  24. Roberts IS. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol. 1996. 50: 285-315. https://doi.org/10.1146/annurev.micro.50.1.285
  25. Rowbotham TJ. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol. 1980. 33: 1179-1183. https://doi.org/10.1136/jcp.33.12.1179
  26. Silver RP, Aaronson W, Vann WF. The K1 capsular polysaccharide of Escherichia coli. Rev Infect Dis. 1988. 10: S282-S286. https://doi.org/10.1093/cid/10.Supplement_2.S282
  27. Thom S, Warhurst D, Drasar BS. Association of Vibrio cholera with fresh water amoebae. J Med Microbiol. 1992. 36: 303 -306. https://doi.org/10.1099/00222615-36-5-303
  28. Visvesvara. Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr Opin Infect Dis. 2010. 23: 590-594. https://doi.org/10.1097/QCO.0b013e32833ed78b
  29. Winiecka-Krusnell J, Wreiber K, von Euler A, Engstrand L, Linder E. Free-living amoebae promote growth and survival of Helicobacter pylori. Scand J Infect Dis. 2002. 34: 253-256. https://doi.org/10.1080/00365540110080052
  30. Xie Y, Kim KJ, Kim KS. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol Med Microbiol. 2004. 42: 271-279. https://doi.org/10.1016/j.femsim.2004.09.001