• Title/Summary/Keyword: Melting treatment

Search Result 353, Processing Time 0.025 seconds

Waterlogging induced oxidative stress and the mortality of the Antarctic plant, Deschampsia antarctica

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.289-296
    • /
    • 2019
  • We investigated the mortality and the oxidative damages of Deschampsia antarctica in response to waterlogging stress. In field, we compared the changes in the density of D. antarctica tuft at the two different sites over 3 years. The soil water content at site 2 was 6-fold higher than that of site 1, and the density of D. antarctica tuft decreased significantly by 55.4% at site 2 for 3 years, but there was no significant change at site 1. Experimental results in growth chamber showed that the $H_2O_2$ and malondialdehyde content increased under root-flooding treatment (hypoxic conditions-deficiency of $O_2$), but any significant change was not perceptible under the shoot-flooding treatment (anoxic condition-absence of $O_2$). However, total chlorophyll, soluble sugar, protein content, and phenolic compound decreased under the shoot-flooding treatment. In addition, the catalase activity increased significantly on the 1st day of flooding. These results indicate that hypoxic conditions may lead to the overproduction of reactive oxygen species, and anoxic conditions can deplete primary metabolites such as sugars and protein in the leaf tissues of D. antarctica. Under present warming trend in Antarctic Peninsula, D. antarctica tuft growing near the shoreline might more frequently experience flooding due to glacier melting and inundation of seawater, which can enhance the risk of this plant mortality.

Heat Treatment Condition for Preparing $Nd_{1+x}Ba_{2-x}Cu_{3}O_{7-\delta}$ Superconductors

  • Fan Zhan guo;wha, Soh-Dea;zhan, Si-Ping;Li Yingmel;Lim Byongjae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.624-627
    • /
    • 2001
  • Two kinds of Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-{\delta}}$, the sintering samples and zone melting samples, were heat treated under pure Ar at 95$0^{\circ}C$. The substitution of Nd ion for Ba ion in the Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-{\delta}}$ before and after the heat treatment were investigated by XRD. In order to know the effects of the heat treatment, the T$_{c}$ and J$_{c}$ of samples with the heat treatment and those without the heat treatment by Ar were comparatively studied. The results show that the substitution of Nd for Ba decreased, T$_{c}$, and J$_{c}$ increased after the treatment under Ar at 95$0^{\circ}C$. The Nd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-{\delta}}$ samples were oxygenated under pure oxygen at 30$0^{\circ}C$. From the XRD pattern it was found that the sample with x< 0.4 could transfer from tetragonal phase to orthorhombic phase after the oxygenation, but the sample with x>0.4 could not make the phase transition even after a long time oxygenation.ion even after a long time oxygenation.ation.n.ation.ation.

  • PDF

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

High Resolution Melting Curve Assay for Detecting rs12979860 IL28B Polymorphisms Involved in Response of Iranian Patients to Chronic Hepatitis C Treatment

  • Fateh, Abolfazl;Aghasadeghi, Mohammad Reza;Keyvani, Hossein;Mollaie, Hamid Reza;Yari, Shamsi;Tasbiti, Ali Reza Hadizade;Ghazanfari, Morteza;Monavari, Seyed Hamid Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1873-1880
    • /
    • 2015
  • Background: A recent genome-wide association study (GWAS) on patients with chronic hepatitis C (CHC) treated with peginterferon and ribavirin (pegIFN-${\alpha}$/RBV) identified a single nucleotide polymorphism (SNP) on chromosome 19 (rs12979860) which was strongly associated with a sustained virological response (SVR). The aim of this study was twofold: to study the relationship between IL28B rs12979860 and sustained virological response (SVR) to pegIFN-${\alpha}$/RVB therapy among CHC patients and to detect the rs12979860 polymorphism by high resolution melting curve (HRM) assay as a simple, fast, sensitive, and inexpensive method. Materials and Methods: The study examined outcomes in 100 patients with chronic hepatitis C in 2 provinces of Iran from December 2011 to June 2013. Two methods were applied to detect IL28B polymorphisms: PCR-sequencing as a gold standard method and HRM as a simple, fast, sensitive, and inexpensive method. Results: The frequencies of IL28B rs12979860 CC, CT, and TT alleles in chronic hepatitis C genotype 1a patients were 10% (10/100), 35% (35/100), and 6% (6/100) and in genotype 3a were 13% (13/100), 31% (31/100), and 5% (5/100), respectively. In genotype 3a infected patients, rs12979860 (CC and CT alleles) and in genotype 1a infected patients (CC allele) were significantly associated with a sustained virological response (SVR). The SVR rates for CC, CT and TT (IL28B rs12979860) were 18%, 34% and 4%, respectively. Multiple logistic regression analysis identified two independent factors that were significantly associated with SVR: IL-28B genotype (rs 12979860 CC vs TT and CT; odds ratio [ORs], 7.86 and 4.084, respectively), and HCV subtype 1a (OR, 7.46). In the present study, an association between SVR rates and IL28B polymorphisms was observed. Conclusions: The HRM assay described herein is rapid, inexpensive, sensitive and accurate for detecting rs12979860 alleles in CHC patients. This method can be readily adopted by any molecular diagnostic laboratory with HRM capability and will be clinically beneficial in predicting treatment response in HCV genotype 1 and 3 infected patients. In addition, it was demonstrated that CC and CT alleles in HCV-3a and the CC allele in HCV-1a were significantly associated with response to pegIFN-${\alpha}$/RBV treatment. The present results may help identify subjects for whom the therapy might be successful.

Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density (고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향)

  • Cho, Jong Hoon;Hwang, Hye In;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.569-573
    • /
    • 2021
  • In this study, high-density carbon blocks were manufactured using coke, binder pitch, and impregnated pitch, then the effect of pitch fluidity on the densification of carbon blocks during the impregnation process was investigated. A green block was manufactured through high-pressure figuration of coke and binder pitch, and a carbon block was obtained through a heat treatment process. An impregnation process was performed to remove pores generated by volatilization of the binder pitch during the heat treatment process. The impregnation process was carried out the high-pressure reaction step of impregnating the pitch into the carbon block followed by the pretreatment step of melting the impregnation pitch. Melting of the impregnation pitch was carried out at 140~200 ℃, and the viscosity of the impregnation pitch decreased as the heat treatment temperature increased. The decrease in the viscosity of the impregnation pitch improved the fluidity and effectively impregnated the pores inside the carbon block, reducing the porosity of the carbon block by 83% and increasing the apparent density by 5%.

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom;Kim, Do-Young;Ko, Youngkyung
    • Journal of Korean Dental Science
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2016
  • Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum (폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직)

  • Lim Cha-Yang;Kang Seuk-Bong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • Microstructure of aluminum alloys produced by the different mixing ratio of secondary ingot made by aluminum UBC (used beverage can) and virgin aluminum was investigated. The phase transitions of casted ingot by heat treatment were also studied. The alloys were melted at the electric resistance furnace, then casted using ceramic filter. Homogenization heat treatment was conducted at $615^{\circ}C$ for 10hrs to control cast microstructure. There were several kinds of phases, in as-cast condition, such as $\alpha$($Al_{12}$ $((Fe,Mn)_3$Si), $\beta$($Al_{6}$ (Fe,Mn)), and fine $Mg_2$Si phases. Especially, the amount of $\beta$-phase which was harmful in forming process was large. The $\beta$-Phase formed was transformed to u-phase by heat treatment. The fine $Mg_2$Si in the aluminum matix was also transformed to $\alpha$-phase by this heat treatment. Impurities filtered during casting process were identified as intermetallic compounds of Fe, Cu, Si.

Characterization of PVDF-DBP Materials for Thermally Induced Phase Separation (열유도상분리법 적용을 위한 PVDF-DBP 소재의 특성평가)

  • Kim, Se Jong;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.449-457
    • /
    • 2016
  • In this study, polyvinylidene fluoride (PVDF) membrane with excellent mechanical properties and chemical resistance was prepared and characterized for the application of water treatment. Dibutyl-phthalate (DBP) was used as a diluent for making a membranes through temperature induced phase separation (TIPS) method, and the crystallization temperature, melting point, cloud point and SEM image were observed with different ratio of diluent in polymer/diluent mixture. The crystallization temperature and melting point increased proportionally with the content of polymer, while the cloud point temperature decreased. Finally, it was confirmed that stable membrane could be manufactured at a polymer content of 62 wt% and a temperature $125^{\circ}C$ using the phase diagram of PVDF/DBP mixtures with temperatures.

A Study on the Applicability of Carbon Mold for Precision Casting of High Melting Point Metal (고융점 금속의 미소형상 정밀주조를 위한 탄소몰드의 적용성에 관한 연구)

  • Ji, Chang-Wook;Yi, Eun-Ju;Kim, Yang-Do;Rhyim, Young-Mok
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Carbon material shows relatively high strength at high temperature in vacuum atmosphere and can be easily removed as CO or $CO_2$ gas in oxidation atmosphere. Using these characteristics, we have investigated the applicability of carbon mold for precision casting of high melting point metal such as nickel. Disc shape carbon mold with cylindrical pores was prepared and Ni-base super alloy (CM247LC) was used as casting material. The effects of electroless Nickel plating on wettability and cast parameters such as temperature and pressure on castability were investigated. Furthermore, the proper condition for removal of carbon mold by evaporation in oxidation atmosphere was also examined. The SEM observation of the interface between carbon mold and casting materials (CM247LC), which was infiltrated at temperature up to $1600^{\circ}C$, revealed that there was no particular product at the interface. Carbon mold was effectively eliminated by exposure in oxygen rich atmosphere at $705^{\circ}C$ for 3 hours and oxidation of casting materials was restrained during raising and lowering the temperature by using inert gas. It means that the carbon can be applicable to precision casting as mold material.

Three Dimensional Thermal-Elastic Plastic Analysis of GMAW Considering the Melting of Weld Bead (비드의 용용상태를 고려한 가스메탈 아크용접의 3차원 열탄소성 변형 해석)

  • Jang-Hyun Lee;Jong-Gye Shin;Ji-Hoon Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Welding is essential in ship production since welding is very popular method for joining two or more metals. However, welding causes residual stress and distortion and these give a bad influence to the structure strength and assembly of ship blocks. Therefore, prediction and treatment of residual stress and distortion is a key to accuracy control in shipyard. In this paper, a computational procedure, based on thermal-elastic-plastic 3-dimensional FEA, has been suggested to simulate butt and fillet welding process. In the simulation process, temperature distribution at each time step is obtained by heat transfer analysis and then thermal deformation analysis is done with obtained temperature distributions to find the residual stress and distortion. In heat transfer analysis, enthalpy method is used to realize phase change at melting temperature. Also element birth and death method is used to simulate adding of weld metal in both heat transfer analysis and thermal elastic plastic analysis. The proposed procedure is verified by related researches and the results show good agreement with those of related researches.