DOI QR코드

DOI QR Code

Characterization of PVDF-DBP Materials for Thermally Induced Phase Separation

열유도상분리법 적용을 위한 PVDF-DBP 소재의 특성평가

  • Kim, Se Jong (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Jeong Woo (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 김세종 (경상대학교 나노신소재융합공학과) ;
  • 이정우 (경상대학교 나노신소재융합공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2016.12.18
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

In this study, polyvinylidene fluoride (PVDF) membrane with excellent mechanical properties and chemical resistance was prepared and characterized for the application of water treatment. Dibutyl-phthalate (DBP) was used as a diluent for making a membranes through temperature induced phase separation (TIPS) method, and the crystallization temperature, melting point, cloud point and SEM image were observed with different ratio of diluent in polymer/diluent mixture. The crystallization temperature and melting point increased proportionally with the content of polymer, while the cloud point temperature decreased. Finally, it was confirmed that stable membrane could be manufactured at a polymer content of 62 wt% and a temperature $125^{\circ}C$ using the phase diagram of PVDF/DBP mixtures with temperatures.

본 연구에서는 수처리 분리막의 적용을 위하여 기계적 물성과 내화학성이 우수한 poly(vinylidene fluoride)(PVDF)의 특성평가를 진행하였다. 열유도상분리법을 통한 분리막을 제조하기 위하여 사용된 희석제는 dibutyl-phthalate(DBP)를 사용하였으며, 고분자와 희석제의 비율에 따른 결정화 온도, 녹는점, 흐림점, SEM 이미지 등을 관찰하였다. 고분자의 함량이 높아질수록 결정화 온도 및 녹는점은 높아졌으며 반대로 흐림점 온도는 낮아짐을 확인하였다. 최종적으로 상평형도 작도를 통하여 고분자함량 62 wt%, 제막 온도 $125^{\circ}C$ 이상에서 안정적인 분리막이 제조 가능함을 확인할 수 있었다.

Keywords

References

  1. S. M. Lee and S. S. Kim, "Structural changes of PVDF membranes by phase separation control", Korean Chem. Eng. Res., 54, 57 (2016). https://doi.org/10.9713/kcer.2016.54.1.57
  2. K. M. Kyung and J. Y. Park, "Effect of operating conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  3. B. M. Jun, E. T. Yun, S. W. Han, TPN. Nguyen, H. G. Park, and Y. N. Kwon, "Chlorine disinfection in water treatment plants and its effects on polyamide membrane", Membr. J., 24, 88 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88
  4. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, and Y. M. Lee, "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", J. Membr. Sci., 509, 94 (2016). https://doi.org/10.1016/j.memsci.2016.02.050
  5. K. M. Kyung and J. Y. Park, "Effect of pH hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 25, 358 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.358
  6. J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M. Lee, "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250 (2016). https://doi.org/10.1016/j.memsci.2016.04.069
  7. J. H. Park, D. J. Kim, and S. Y. Nam, "Charactertization and preparation of PEG-polyimide copolymer asymmetric flat sheet membrnaes for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  8. H. C. Koh, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and W. M. Choi, "Separation and purification of biogas by hollow fiber gas separation membrane module", Membr. J., 21, 177 (2011).
  9. H. N. Jang, S. J. Kim, Y. T. Lee, and K. H. Lee, "Progress of nanofiltration hollow fiber membrane", J. Appl. Chem. Eng., 24, 456 (2013).
  10. C. H. Yun, J. H. Kim, K. W. Lee, and S. H. Park, "Water treatment application of large pore microfiltration membrane and its problems", Membr. J., 24, 194 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.194
  11. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  12. D. J. Kim, H. Y. Hwang, S. J. Kim, Y. T. Hong, H. J. Kim, T. H. Leem, and S. Y. Nam, "Characterization of SPAES composite membrane containing variously funtionallized MMT for direct methanol fuel cell application", Trans Korean Hydrog New Energy Soc., 22, 42 (2011).
  13. G. Ji, L. Zhu, B. Zhu, C. Zhang, and Y. Xu, "Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture", J. Membr. Sci., 319, 264 (2008). https://doi.org/10.1016/j.memsci.2008.03.043
  14. D. J. Kim, D. Y. Oh, M. K. Jeong, and S. Y. Nam, "Recent trends in composite materials for aircrafts", Appl. Chem. Eng., 27, 252 (2016). https://doi.org/10.14478/ace.2016.1043
  15. S. M. Woo, J. J. Choi, and S. Y. Nam, "Prepration of hydoxy polyimde membranes and their carbon dioxide permeation property", Membr. J., 22, 128 (2012).
  16. B. G. Ko, J. H. Na, D. H. Nam, K. H. Kang, and C. Y. Lee, "Fouling mitigation for pressurized membrane of side-stream MBR process at abnormal operation condition", J. Korean Soc. Environ. Eng., 38, 323 (2016). https://doi.org/10.4491/KSEE.2016.38.6.323
  17. S. G. Hong, S. H. Lee, J. H. Kim, J. H. Kim, and Y. G. Ju, "Evolution of RO process for green future", KIC News., 14, 9 (2011).
  18. S. M. Woo, Y. S. Chung, and S. Y. Nam, "Evaluation of morphology and water flux for polysulfone flat sheet membrane with conditions of coagulation bath and dope solution", Membr. J., 22, 258 (2012).
  19. Q. Zhou, Z. Wang, H. Shen, Z. Zhu, L. Liu, L. Yang, and L. Cheng, "Morphology and performance of PVDF TIPS microfiltration hollow fiber membranes prepared from PVDF/DBP/DOP systems for industrial application", J. Chem. Technol. Biotechnol., 91, 1697 (2015).
  20. N. T. Hassankiadeh, Z. Cui, J. H. Kim, D. W. Shin, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight", J. Membr. Sci., 471, 237 (2014). https://doi.org/10.1016/j.memsci.2014.07.060
  21. I. Y. Jung, M. N. Han, and M. H. Cha, "Phase separation of thermally induced phase separation membrane and minute structure control with phase separation", Theories and Appl. Chem. Eng., 9, 1994 (2003).
  22. M. S. Park, J. H. Kim, M. S. Jang, and S. S. Kim, "Preparaion of PVDF hollow fiber membrane via TIPS (thermally induced phase separation) and stretching", Membr. J., 24, 158 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.158
  23. G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review", Ind. Eng. Chem. Res., 50, 3798 (2011). https://doi.org/10.1021/ie101928r
  24. G. L. Ji, L. P. Zhu, B. K. Zhu, and Y. Y. Xu, "Effect of diluents on crystallization of poly(vinylidene fluoride) and phase separated structure in a ternary system via thermally induced phase separation", Chin. J. Polym. Sci., 26, 291 (2008). https://doi.org/10.1142/S0256767908002947
  25. M. Gu, J. Zhang, X. Wang, H. Tao, and L. Ge, "Formation of poly(vinylidene fluoride) (PVDF) membranes via thermally induced phase separation", Desalination, 192, 160 (2006). https://doi.org/10.1016/j.desal.2005.10.015
  26. J. Yang, D. W. Li, Y. K. Lin, X. L. Wang, F. Tian, and Z. Wang, "Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation", J. Appl. Polym. Sci., 110, 341 (2008). https://doi.org/10.1002/app.28606