• Title/Summary/Keyword: Melted slag

Search Result 40, Processing Time 0.023 seconds

Properties of Mortar according to Gradation change of Electric Arc Furnace Oxidizing Slag Fine Aggregate made by Rapidly Cooled Method (급냉 전기로 산화슬래그 잔골재의 입도 변화에 따른 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Choi, Sun-Mi;Kim, Ji-Ho;Lee, Won-Young;Oh, Sang-Youn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.112-118
    • /
    • 2012
  • Steel industry produces many by-products and wastes such as blast furnace slag, electric arc furnace slag, and converter slag. As in the case of rock, the main component of steel slag are CaO and $SiO_2$ ; further, steel slag is as alkaline as portland cement or concrete. Electric arc furnace oxidizing slag is possible to use as an aggregate for concrete ; however, it has been reclaimed because of it's expansibility caused by free CaO. Recently, a innovative rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to minimum level and increases the stability of iron oxide. Therefore, this study describes the results of a series of research to utilize globular shape of electric arc furnace oxidizing slag fine aggregates made by rapidly cooled method for the construction industry by cooling rapidly melted slag from the steel industry. First of all, an experiment was carried out to investigate the quality characteristics of rapidly cooled electric arc furnace oxidizing slag fine aggregates in order to determine whether they can be applied to the construction industry. Then, by applying them to concrete of various particle sizes, we explored experimentally the desired condition to apply rapidly cooled electric arc furnace oxidizing slag fine aggregates to concrete.

  • PDF

Mineral Composition and Color Properties of Molten Clinker made from Blast Furnace Slag (고로(高爐)슬래그로 부터 제조(製造)된 용융(溶融)클링커의 광물조성(鑛物組成)과 색도특성(色度特性))

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.71-77
    • /
    • 2011
  • Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620 for molten clinker fabrication. Color and mineral composition of molten clinker was investigated by XRD and colorimeter. It was found that the molten clinker contains alite and belite equivalent to OPC clinker mineral and shows higher whiteness value than that of OPC. Whiteness of the molten clinker decreased with LSF and SM. Also the whiteness value of the slag cement using molten clinker was higher than that of common slag cement.

The Properties of Flow and Compressive Strength of Mortar According In Replacement Ratio of Rapidly-Chilled Steel Slag Pine Aggregate (급냉 제강 슬래그 잔골재 대체율에 따른 모르타르의 유동성 및 압축강도 특성)

  • Cho Sung-Hyun;Kim Jin-Man;Kim Moon-Han;Han Ki-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.77-84
    • /
    • 2005
  • The steel slag, a by-product which is produced by refining pig iron during the manufacture of steel, is mainly used as road materials after aging. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. However, steel slag used in this study was controled by a air-jet method which rapidly cools substance melted at a high temperature. The rapidly-chilled method would prevent from generation of free-CaO in steel slag. This study dealt with the influence of the using rate of rapidly-chilled steel slag on flow, dosage of SP, W/C ratio, and strength of mortar by statistical experimental design. Also, the results of this experiment were approved by statistical analysis methods, such as analysis of variance and F-testing. As results of F-testing, this paper proved at $1\%$ level of significance that the more the using rate of rapidly-chilled steel slag increased, the more this affected the enhancement of flow, the decrease of dosage of SP and W/C ratio, and the development of compressive strength. Also, considering the fluidity and compressive strength of mortar, it is desirable to use $75\%$ of rapidly-chilled steel slag for river sand.

Distribution Behavior of Natural Radionuclide Pb in Molten Fe to Metal/Slag/Gas Phase (용융 Fe 중 천연방사성핵종 Pb의 금속/슬래그/가스상으로의 분배거동)

  • So-Yeong Lee;Hyeon-Soo Kim;Jong-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.54-61
    • /
    • 2024
  • When steel contaminated with Pb, produced by the decay of natural radionuclides, is remelted, Pb distributes among the metal, slag, and gas phases. In this study, 5 wt%Pb was added to Fe and melted with CaO-SiO2-Al2O3-MgO slag to investigate Pb's distribution in the metal/slag/gas. As slag basicity ((wt%CaO)/(wt%SiO2)) increased, Pb solubility in Fe slightly increased, while Pb in the slag tended to decrease. Consequently, the slag/metal distribution ratio of Pb decreased with increasing basicity. Thermodynamic calculations revealed that the slag/Fe phase distribution ratio of Pb remained very low irrespective of the activity coefficient of PbO in the slag, consistent with the experimental results. The calculated evaporation rate of Pb in Fe-Pb was approximately 22 times that of Fe; hence, most of the Pb evaporated into the gas phase.

Waste Heat Utilization of Melted slags at Pyrolysis, Gasification and Melting System (열분해 가스화 용융시스템에서 용융슬래그의 폐열 활용)

  • Lee, Ho-Seok;Sung, Sang-Chul;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1237-1242
    • /
    • 2008
  • A study on waste heat utilization of melted slags at pyorlysis, gasification and melting system was performed. Researchers studied heat balance of substances that flow and flow out to the system which is consisted of melting furnace, combustion chamber, and waste heat boiler, then they calculated melting slags' quantity of heat by the first law of thermodynamics. If they use water cursh pit outflow which is gotten by quenching of melting slag as a energy for heating and cooling system, steam of waste heat boiler would be delivered to a steam turbine, making energy, then they will get 67,671,000 won of profit a year. It will take 3 years to repossess the cost that they invested for building it. And, if we predict durability of trash burner is 20 years, we will get approximately 1,150,407,000 won of profits in 17 years without the period when we repossess the building costs.

  • PDF

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags (철강산업 슬래그를 이용하여 제조한 바잘트 소재의 특성)

  • Jung, Woo-Gwang;Back, Gu-Seul;Yoon, Mi-Jung;Lee, Jee-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2017
  • In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a mass-production process for glass ceramics. Then, glass-ceramic products, having a basalt composition with $SiO_2$, $Al_2O_3$, CaO, MgO, and $Fe_2O_3$ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but $Al_2O_3$ and $Na_2O$ contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below $1250^{\circ}C$, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82 % before the process change and 87 % after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.

An Effect of $Al_{2}O_{3}$ on the Reaction between Molten Converter Slag and CaO pellet (용융전로(熔融轉爐)슬래그와 CaO펠렛의 상호반응(相互反應)에 미치는 $Al_{2}O_{3}$의 영향(影響))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.3-9
    • /
    • 2006
  • As a basic study on the conversion of molten converter slag to the ordinary portland cement, the effects of $Al_{2}O_{3}$ addition on the interface reaction between solid CaO and molten converter slag has been studied. Alumina added converter slag whose basicity was controlled to 1 and 2 was melted and hold for 30 minutes in MgO crucible at $1500^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and held for 30minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet with the addition of $Al_{2}O_{3}$ was measured by the change of the radius or sintered CaO pellet and the interface layer was observed by SEM/EDX. As a result. At the basicity 2 slag, thickness of created $C_{3}S$ layer increased 3.5 times and quantity of $C_{6}AF_{2}\;or\;C_{4}AF$ phase increase 2 times than baisicy 1 slag.

The Interface Reaction Between Molten Converter Slag and $C_3A(3CaO{\cdot}Al_2O_3)$ Pellet (용융전로(熔融轉爐)슬래그와 $C_3A(3CaO{\cdot}Al_2O_3)$ 펠렛사이의 계면반응(界面反應))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.13-17
    • /
    • 2005
  • As a basic study for recycling molten converter slag as an ordinary portland cement (OPC) by a conversion process, the reaction mechanism and the rate of the formation of $C_4AF$ which is one of the main components of OPC were investigated. The converter slag whose basicity was controlled by adding reagent grade $SiO_2$ was melted and hold for 30 minutes in MgO crucible at $1300^{\circ}C{\sim}1350^{\circ}C$. Then, the sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for $10{\sim}30$minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of $C_3A$ pellet was measured by the change of radius of the sintered $C_3A$ pellet, and the formed phase of $C_4AF$ was observed by SEM/EDX. As a result, the dissolution rate of $C_3A$ pellet into molten slag was increased from $0.75{\times}10^{-4}(cm/sec)$ at $1300^{\circ}C$ to $1.67{\times}10^{-4}(cm/sec)$ at $1350^{\circ}C$, and the mixed layer of $C_4AF$ and $C_{12}A_7$ was found between slag and $C_3A$ pellet.

Recycling and Characteristics of Plasma Melting Slag Materials Produced by Different Cooling Methods (플라즈마 용융방식으로 배출된 슬래그의 냉각방식에 따른 재료적 특성 및 재활용)

  • Chung, Juyoung;Bae, Wookeun;Kim, Moonil;Park, Seyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.25-31
    • /
    • 2010
  • In this study, it was intended to suggest new cooling method that enables to improve the applicability and added value higher than existing slag by applying new cooling method(powder cooling slag) at the time discharging slag, which is produced from the ash melting system that the plasma torch is used for the first time in Korea. It is suggested the applicative direction in the development of future recycling process by discovering its nature of material and applicative possibility as earthwork material. The ashes produced after the sewage sludge discharged from Y city was incinerated by the fluidized bed method and was used as test materials. As result of XRF(X-Ray Flourescence Spectrometry) analysis, main ingredient of sewage sludge ashes was $SiO_2$(32%) besides CaO, $Al_2O_3$, $Fe_2O_3$, and so on. In addition, as result of XRD analysis, traditional diffuse pattern of glass could be found from granulated air-cooled slags, while a minor crystal phase could be observed from powder cooling slag, because the powder on the surface exists in the state not melted. From EDX(Energy Dispersive X-ray Spectroscopy) analysis, it is deemed that powder ingredient has no change before and after it is used as cooling medium, and accordingly it is thought that the powder can be produced as the material where the function is added if used in different shape.

Synthesis of Cement Raw Materials by Melting of Industrial Wastes (폐기물의 용융처리에 의한 시멘트원료의 합성)

  • Hwang, Yeon;Sohn, Yong-Un;Chung, Hun-Saeng;Lee, Hong-Ki;Park, Hyun-Suh
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 1996
  • CZS(2Ca0 , SiO\ulcorner) phase of cement clinkcr was obtaincd by melting mixcd four indnstrial wasles of limestone sludge, waste Foundry sand, coal lly ash fiorn power plants and chernicas glasses. The effect ot mixing ratio of four rvastc mater~als ou the composnlg phascs in melled slag was investigated. Thc mixed wastes were meltcd to slag by heat under a constant basicity at 1370C. The shg consisted of p -CIS and C,AS(2CaO - A I P , . SiO,). The ratio of two phases was varied with mixing ~atioo f the waste materials. In order Lo increasc the amount ot j -C2S phase, the coal fly ash content should be reduced, while amount of the chemical glass be increased. The coal fly ash contcnt was the most imporlant factor in controlling phases of thc melted-slag.

  • PDF