• Title/Summary/Keyword: Melamine resin

Search Result 84, Processing Time 0.029 seconds

Physical and Mechanical Properties of Three-layer Particleboards Bonded With UF and UMF Adhesives

  • Iswanto, Apri Heri;Simarmata, Janrahman;Fatriasari, Widya;Azhar, Irawati;Sucipto, Tito;Hartono, Rudi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.787-796
    • /
    • 2017
  • A low dimensional stability and poor bending strength properties were main problems in particleboard manufacturing. The objective of this research was to evaluate the effect of mixed wood species and urea-formaldehyde (UF) or urea-melamine-formaldehyde (UMF) resins on the physical and mechanical properties of three-layer particleboards. The ratio of face/core/back layer was 1 : 2 : 1. The resin content of 12% for both UF resins and UMF resins (UF/MF = 70/30% w/w) was used. The results of this study showed that the utilization of S.mahagony shaving using both UF and UMF resins caused a decrease in the thickness swelling and water absorption of the boards. Thickness swellings of particleboard made of Sengon/Sengon/Sengon (SSS), Mahogany/Mahogany/Mahogany (MMM), Sengon/Mahogany/Sengon (SMS), and Mahogany/Sengon/Mahogany (MSM) were in the range of 23%, 12~16%, 14~16%, and 13~21%, respectively. The board bonded with UMF resin demonstrated better dimensional stability than that bonded with UF resin alone. Modulus of elasticity (MOE) and modulus of rupture (MOR) of particleboards made of S. mahagony shaving in the surface layer in both MMM and MSM boards were better than those of the SSS and SMS. MOE of MMM and MSM board was in the ranges of 24,000 to $26,000kg.cm^{-2}$ and 18,000 to $21,000kg.cm^{-2}$ respectively. Meanwhile, the MOR of board was in the ranges of 200 to $240kg.cm^{-2}$ and 190 to $228kg.cm^{-2}$, respectively.

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

A study on the Durable Press finish by Wet-Fixation Process for Rayon Fabrics (II) - Effect of Treatment Temperature and Time - (레이온 직물의 Wet-Fixation에 의한 DP가공에 관한 연구(II) -처리온도 및 시간의 영향-)

  • Hu Yoon Sook;Kim Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.4
    • /
    • pp.357-369
    • /
    • 1989
  • The purpose of this study was to investigate the effects of treatment temperature and time on the, of easy-care and strength properties of the wet fixation processed rayon fabrics. Viscose rayon fabrics were treated with mixed resins of melamine formaldehyde (MF) and DMDHEU by one bath and two bath wet fixation processes. The MF/DMDHEU mixed resin concentrations were 50/100, 50/150, 100/100 and 100/150(g/1). Magnasium chloride was used as a catalyst. The wet fixation conditions were 24hrs at room temperature,20 mins at $75^{\circ}C$ and 5 mins at $105^{\circ}C$ Wet fixation processed fabrics did not show the difference in the resin add-one, DP ratings and wrinkle recovery angles by the different treatment temperatures and times. DP ratings were in the order of $105^{\circ}C>75^{\circ}C>room$ temp, in one bath and two bath wet fixation. Breaking and tearing strength of one bath processed fabrics showed in the order of $75^{\circ}C>room\;temp>105^{\circ}C$ The breaking strength of two bath processed fabrics showed in the order of $105^{\circ}C>75^{\circ}C>room$ temp. Tearing strength showed in the order of $75^{\circ}c>105^{\circ}C>room$ temp. Abrasion resistances were in the order of $75^{\circ}C>105^{\circ}C>room$ temp. in one bath and two bath processes.

  • PDF

Hydrogen Storage Properties of Microporous Carbon Nitride Spheres (구형의 질화탄소 마이크로세공체의 수소저장 특성)

  • Kim, Se-Yun;Suh, Won-Hyuk;Choi, Jung-Hoon;Yi, Yoo-Soo;Lee, Sung-Keun;Stucky, Galen D.;Kang, Jeung-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.744-744
    • /
    • 2009
  • The development of safe and suitable hydrogen storage materials is one of key issues for commercializing hydrogen as an energy carrier. Carbon based materials have been investigated for many years to store hydrogen by the adsorption of the gas on the surface of the carbon structure. Recently, it is reported that carbon nitride nanobells have high hydrogen storage capacity since the nitrogen atom plays an important role on attracting hydrogen molecules. Here we report carbon nitride microporous spheres (CNMS) which have the maximum surface area of 995.3 $m^2/g$. Melamine-Formaldehyde resin is the source of carbon and nitrogen in CNMS. Most of the CNMS pores have diameters in the range of 6 to 8 A which could give a penetration energy barrier to a certain molecule. In addition, the maximum hydrogen storage capacities of carbon nitride spheres are 1.9 wt% under 77 K and 1 atm.

  • PDF

Predicted of hydration heat and compressive strength of limestone cement mortar with different type of superplasticizer

  • Didouche, Zahia;Ezziane, Karim;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.659-677
    • /
    • 2018
  • The use of some superplasticizers in the production of mortar or concrete influences the hydration kinetic and the amount of total heat. This results in a modification of some properties, namely mortar workability, mechanical strength and durability. Three superplasticizers were used; a polynaphthalenesulfonate (PNS), a melamine resin (PMS) and a polycarboxylate (PC). They have been incorporated into various amount in a standardized mortar based on limestone cement. The aim of this study was to evaluate the rheological, mechanical and Calorimeters properties of this mortar. This will select the most compatible product and more able to be used depending on the climate of the country and the cement used. The PNS is incompatible with this type of cement registering a decrease of strength but the PMS and the PC modify the kinetics of hydration with significant heat generation and improved mechanical strength. The measured heat flow is significantly influenced by the type and dosage of superplasticizer especially for low dosage. Hydration heat and compressive strength of the different mixtures can be evaluated by determining their ultimate values and ages to reach these values where the correlation coefficients are very satisfactory.

A Study on Manufacturing Cokes for Ferroalloy Using Domestic Anthracite and Waste Plastic (국산(國産) 무연탄(無煙炭)과 폐플라스틱을 사용(使用)하는 합금철용(合金鐵用) 코크스의 제조(製造)에 관한 연구(硏究))

  • Lee, Gye-Seung;Song, Young-Jun;Seo, Bong-Won;Lee, Dae-Young;Lee, Sung-Riong;Yoon, Si-Nae;Kim, Youn-Che
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.47-56
    • /
    • 2008
  • The aim of this study is to produce cokes which can be used for the production of ferroalloy, for this purpose, domestic anthracite mixed with plastic was sintered at various condition. The combustion and physical properties of anthracite and plastic, coal separation, and the influence of factors on the strength of coke were investigated. The results of this study are as follows: 1. The three kinds of anthracite from the Samcheok region contained 25 to 30% ash of $100{\mu}m$ over size, and have the caloric value of 5,205 cal/g(TaeAn), 4,893 cal/g(JangSung), 4,873cal/g(KyongDong). 2. The recommendable conditions for heavy-fluid separation of the Samcheok coal are to set the specific gravity of heavy fluid to 2.4 and control the size of coal to $35{\sim}140mesh$. 3. It is concluded that phenolic resin powder, liquefied phenolic resin, SAN, and melamine resin can be used as a binder for the anthracite cokes, from the thermal analysis of various plastics. Especially, the liquefied phenolic resin was considered as the most suitable binder as it would simplify the process.

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.580-587
    • /
    • 2017
  • Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

A Study on Securing Multiple Quality Requirements of New Product Using Screening Design with a Case Study (선별실험계획을 활용한 신제품의 다수품질특성 확보 방안 : 사례 연구를 중심으로)

  • Byun, Jai-Hyun;Lee, Ki-Chang;Suh, Pan Seok;Kwak, Kyung-Hwan;Jang, Sung Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • For product or process design and development, it is common to optimize multiple responses (characteristics) based on experimental data. To determine optimal conditions, we need to design the experiment, estimate a proper model for each response, and optimize the multiple responses simultaneously. There are several techniques and many research results on optimizing multiple responses simultaneously, when the experimental data are available. However, the experimental design issue for optimizing multiple responses has not been discussed yet. This paper proposes some idea on how to plan screening design when requirements for multiple performance characteristics are to be met in developing new products. A screening design procedure is developed for securing the requirements of multiple responses. Initial design factors are classified into three categories; specific, non-conflicting common, and conflicting common. After screening experiments, follow-up design region search method is suggested with respect to the most unsatisfied or important response, or overall desirability. A case study on a synthesis of melamine formaldehyde resin is presented to illustrate the procedure and to show the validity of the approach.

Evaluating The Water Resistance of Wood Adhesives Formulated with Chicken Feather Produced from Poultry Industry (도계부산물인 닭털을 이용한 목재접착제의 내수성 평가)

  • Park, Dae-Hak;Yang, In;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.126-138
    • /
    • 2017
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a raw material of wood adhesives. For the purpose, adhesive resins were formulated with NaOH- and $H_2SO_4$-hydrolyzed CF as well as crosslinkers, and then the properties and water resistance of the adhesive resins against hot water were measured. CF was made of mainly keratin-type protein, and no or very low content of heavy metals was detected. Hydrolysis rate of CF increased as NaOH concentration in hydrolysis solutions increased. However, in order to minimize the loss of adhesive property of protein itself by the severe hydrolysis of CF and to seek its proper hydrolysis conditions, NaOH concentrations in hydrolysis solution determined to adjust to 5%, 7.5% and 10%. In the NaOH-hydrolyzed CF, $H_2SO_4$-hydrolyzed CF as a hardener and crosslinker were added to formulate CF-based adhesive resins. Solid content of the resins ranged from 28.3% to 44.8% depending on hydrolysis conditions and type of crosslinker. Viscosity of the resins at $25^{\circ}C$ was very high. However, when the temperature of the resins was increased to $50^{\circ}C$, the viscosity decreased greatly and thus the resins could be applied as a sprayable resin. Retention rate measured to evaluate the water resistance of adhesive resins was the highest in the cured resin formulated with 5% NaOH-hydrolyzed CF and 5% $H_2SO_4$-hydrolyzed CF of 10% based on the solid weight as a hardener. Retention rate depending on crosslinkers added into adhesive resins was the highest phenol-formaldehyde (PF) followed by melamine-urea-formaldehyde (MUF) and formalin. The retention rate of CF-based adhesives formulated with 5% NaOH-hydrolyzed CF, PF and $H_2SO_4$-hydrolyzed CF of 10% and over did not differ statistically from that of commercial MUF resins. All of CF-based adhesives formulated with PF as a crosslinker and one with 5% NaOH-hydrolyzed CF of 55%, 5% $H_2SO_4$-hydrolyzed CF of 15%, and MUF of 30% on the basis of solid weight could be substituted for commercial urea-formaldehyde resins, From the results, CF can be used as a raw material of wood adhesives if hydrolyzed in proper conditions.