DOI QR코드

DOI QR Code

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes -

다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -

  • Jang, Jae-Hyuk (Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Min (Department of Forest Products, National Institute of Forest Science) ;
  • Kang, Eun-Chang (Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Sang-Min (Department of Forest Products, National Institute of Forest Science)
  • 장재혁 (국립산림과학원 임산공학부) ;
  • 이민 (국립산림과학원 임산공학부) ;
  • 강은창 (국립산림과학원 임산공학부) ;
  • 이상민 (국립산림과학원 임산공학부)
  • Received : 2017.07.10
  • Accepted : 2017.08.20
  • Published : 2017.09.25

Abstract

Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

목섬유 단열재는 친환경 고단열성에 기인하여 저에너지 및 쾌적하고 안전한 주거 공간 형성을 위한 핵심 건축재료로 고려된다. 본 연구에서는 서로 다른 접착제로 제조한 단열재용 저밀도섬유판의 폼알데하이드(HCHO) 총휘발성유기화합물(TVOC) 방출 및 화염에 의한 연소 형상을 조사하였다. 멜라민 요소 폼알데하이드(MUF), 페놀 폼알데하이드(PF), emulsified methylene diphenyl diisocyanate (eMDI) 및 라텍스 수지 접착제 등으로 제조한 저밀도섬유판 4종의 HCHO TVOC 방출 특성 및 연소 형상은 각각 챔버법과 화염실험을 통하여 분석하였다. 그 결과 MUF, eMDI, 라텍스 수지 접착제로 제조한 저밀도섬유판들은 Super $E_0$급의 우수한 HCHO 저방출 성능을 나타냈다. 반면 PF 수지로 제조된 저밀도섬유판은 $E_0$급 성능을 나타내었다. TVOC 방출량은 모든 저밀도섬유판이 국내 실내공기질 기준(이하 $400{\mu}g/m^2{\cdot}h$)을 만족하였으며, 기존 석유계 합성원료 기반의 단열재보다 낮은 수치를 나타냈다. 그중에서도 특히 eMDI 수지 접착제로 제조한 경우에서는 HCHO 및 TVOC 방출량이 각각 $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$로 가장 낮게 측정되었다. 그러나 eMDI로 제조한 저밀도섬유판에서 방출된 VOC의 성분을 조사한 결과, 톨루엔 성분($3{\mu}g/m^2{\cdot}h$)이 소량 검출되었다. 화염에 의한 연소시험에서는 MUF 수지 접착제로 제조한 저밀도섬유판이 다른 경우에 비하여 연소 후 비교적 가장 양호한 형상을 나타내었다. HCHO 및 TVOC 방출 특성, 연소 형상을 고려하였을 때 단열재용 저밀도섬유판은 MUF 수지 접착제가 가장 적합할 것으로 판단된다.

Keywords

References

  1. Dunky, M. 2005. Resins for ultra low formaldehyde emission according to the Japanese F**** quality. In: Frihart, C.R. (ed), San Diego, USA, Proc. of the Wood Adhesives 2005 Conference. pp. 343-349.
  2. Feist, W., Schnieders, J., Dorer, V., Haas, A. 2005. Re-inventing air heating: Convenient and comfortable within the frame of the passive house concept. Energy and Buildings 37: 1186-1203. https://doi.org/10.1016/j.enbuild.2005.06.020
  3. Hirata, T., Kawamoto, S., Okuro, A. 1991. Pyrolysis of melamine-formaldehyde and urea-formaldehyde resins. Journal of Applied Polymer Science 42: 3147-3163. https://doi.org/10.1002/app.1991.070421208
  4. Jang, J.-H., Lee, M., Lee, S.-M., Kang, E.-C. 2017a. Characteristics of low density fiberboards for insulation material with different adhesives (I)-Thermal insulation performance and physical properties-. Journal of the Korean Wood Science and Technology 45(3): 360-367. https://doi.org/10.5658/WOOD.2017.45.3.360
  5. Jang, J.-H., Lee, M., Lee, S.-M., Park, S.-B. 2017b. Formaldehyde emission of building materials and effect of carbonized board on their reduction. Journal of the Korean Wood Science and Technology 45(3): 327-334. https://doi.org/10.5658/WOOD.2017.45.3.327
  6. Kamke, F.A., Lee, J.N., 2007. Adhesive penetration in wood -A review. Wood and Fiber Science 39(2): 205-220.
  7. Kang, Y.-J., Lee, J.-H., Lee, H.-Y., Kim, S.-M. 2017. Heating and cooling energy demand evaluating of standard houses according to layer component of masonry, concrete and wood frame using PHPP. Journal of the Korean Wood Science and Technology 45(1): 1-11. https://doi.org/10.5658/WOOD.2017.45.1.1
  8. Kim, J.-H., Lee, J.-H., Jeong, S.-G., Kim, S.-M. 2015. Formaldehyde emissions from particle board made with phenol-urea-formaldehyde resin prepared by different synthesis methods. Journal of Adhesion Science and Technology 29(19): 2090-2103. https://doi.org/10.1080/01694243.2015.1057394
  9. Kim, G.-N., Chun, Y.-C., Oh, S.-T., Park, S.-H., Lee, C.-H., Yoo, C.-S., Min, B.-K. 1994. Modification of SBR latex and its adhesion characteristic. Journal of the Korea Institute of Rubber Industry. 29(5): 444-452.
  10. Kim, S.-H., Yu, S.-G., Seo, J.-K., Kim, S.-M. 2013. Thermal performance of wooden building envelope by thermal conductivity of structural members. Journal of the Korean Wood Science and Technology 41(6): 515-527. https://doi.org/10.5658/WOOD.2013.41.6.515
  11. Korea Standard KS F 2271. 2006. Testing method for incombustibility of internal finish material and element of buildings. Korea Standards Association, Seoul, Republic of Korea.
  12. Korea Standard KS F 3200. 2016. Fiberboards. Korea Standards Association, Seoul, Republic of Korea.
  13. Korea Standard KS F ISO 5660-1. 2008. Reaction to fire test -Heat release, smoke production and mass loss rate- Part 1: Heat release rate (cone calorimeter method). Korea Standards Association, Seoul, Republic of Korea.
  14. Korea Standard KS M 1998. Determination of the emission rate of formaldehyde and volatile organic compounds in building interior products, 2009. Korea Standards Association, Seoul, Republic of Korea.
  15. Missia, D.A., Demetriou, E., Michael, N., Tolis, E.I., Bartzis, J.G. 2010. Indoor exposure from building materials: A field study. Atmospheric Environment 44: 4388-4395. https://doi.org/10.1016/j.atmosenv.2010.07.049
  16. Pizzi, A. 2015. Synthetic adhesives for wood panels: Chemistry and Technology. In: Progress in adhesion and adhesives. Ed. by Mittal, K.L., Scrivener Publishing, Beverly, MA, USA. pp. 85-123.
  17. Salem, M.Z.M., Bohm, M. 2013. Understanding of formaldehyde emissions from solid wood: An overview. Bioresources 8(3): 4775-4790.
  18. Salem, M.Z.M., Bohm, M., Barcik, S., Berankova, J. 2011. Formaldehyde emission from wood-based panels bonded with different formaldehyde-based resins. Drvna Industrija 62(3): 177-183. https://doi.org/10.5552/drind.2011.1102
  19. Woolley, W.D., Fardell, P.J. 1977. The prediction of combustion products. Fire Safety Journal 1: 11-21. https://doi.org/10.1016/0379-7112(77)90004-2
  20. Yu, C., Crump, D. 1998. A review of the emission of VOCs from polymeric materials used in buildings. Building and Environment 33(6): 357-374. https://doi.org/10.1016/S0360-1323(97)00055-3