DOI QR코드

DOI QR Code

Evaluating The Water Resistance of Wood Adhesives Formulated with Chicken Feather Produced from Poultry Industry

도계부산물인 닭털을 이용한 목재접착제의 내수성 평가

  • Park, Dae-Hak (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Yang, In (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University) ;
  • Choi, Won-Sil (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Oh, Sei Chang (Department of Forest Resources, College of Life and Environmental Science, Daegu University) ;
  • Ahn, Dong-uk (Department of Animal Science, Iowa State University) ;
  • Han, Gyu-Seong (Department of Wood and Paper Science, College of Agriculture, Life & Environments Sciences, Chungbuk National University)
  • 박대학 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 양인 (충북대학교 농업생명환경대학 목재종이과학과) ;
  • 최원실 (서울대학교 농생명과학공동기기원) ;
  • 오세창 (대구대학교 생명환경대학 산림자원학과) ;
  • 안동욱 (아이오와주립대 동물과학과) ;
  • 한규성 (충북대학교 농업생명환경대학 목재종이과학과)
  • Received : 2016.12.09
  • Accepted : 2017.01.09
  • Published : 2017.01.25

Abstract

This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a raw material of wood adhesives. For the purpose, adhesive resins were formulated with NaOH- and $H_2SO_4$-hydrolyzed CF as well as crosslinkers, and then the properties and water resistance of the adhesive resins against hot water were measured. CF was made of mainly keratin-type protein, and no or very low content of heavy metals was detected. Hydrolysis rate of CF increased as NaOH concentration in hydrolysis solutions increased. However, in order to minimize the loss of adhesive property of protein itself by the severe hydrolysis of CF and to seek its proper hydrolysis conditions, NaOH concentrations in hydrolysis solution determined to adjust to 5%, 7.5% and 10%. In the NaOH-hydrolyzed CF, $H_2SO_4$-hydrolyzed CF as a hardener and crosslinker were added to formulate CF-based adhesive resins. Solid content of the resins ranged from 28.3% to 44.8% depending on hydrolysis conditions and type of crosslinker. Viscosity of the resins at $25^{\circ}C$ was very high. However, when the temperature of the resins was increased to $50^{\circ}C$, the viscosity decreased greatly and thus the resins could be applied as a sprayable resin. Retention rate measured to evaluate the water resistance of adhesive resins was the highest in the cured resin formulated with 5% NaOH-hydrolyzed CF and 5% $H_2SO_4$-hydrolyzed CF of 10% based on the solid weight as a hardener. Retention rate depending on crosslinkers added into adhesive resins was the highest phenol-formaldehyde (PF) followed by melamine-urea-formaldehyde (MUF) and formalin. The retention rate of CF-based adhesives formulated with 5% NaOH-hydrolyzed CF, PF and $H_2SO_4$-hydrolyzed CF of 10% and over did not differ statistically from that of commercial MUF resins. All of CF-based adhesives formulated with PF as a crosslinker and one with 5% NaOH-hydrolyzed CF of 55%, 5% $H_2SO_4$-hydrolyzed CF of 15%, and MUF of 30% on the basis of solid weight could be substituted for commercial urea-formaldehyde resins, From the results, CF can be used as a raw material of wood adhesives if hydrolyzed in proper conditions.

본 연구는 주원료로 도계부산물인 닭털의 NaOH 가수분해물, 경화제로 닭털의 $H_2SO_4$ 가수분해물 및 폼알데히드계가교제를 반응시켜 접착제를 제조하고, 이에 대한 물성 및 내수성 실험을 통하여 닭털의 목질계 판상재용 접착제의 원료화 가능성을 확인하기 위하여 수행하였다. 닭털은 주로 케라틴계 단백질로 구성되어 있었으며, 중금속의 함유량이 매우 낮거나 검출되지 않았다. 알칼리에 대한 닭털의 가수분해율은 수용액 내의 NaOH 농도가 증가함에 따라 계속 증가하였으나, 과도한 가수분해에 따른 단백질 고유의 접착능 손실을 최소화하고 적정한 가수분해 조건을 찾기 위하여 닭털의 가수분해제 내의 NaOH 농도를 5%, 7.5%, 10%로 결정하였다. 접착제의 조성을 보면, 고형분 함량을 기준으로 70%의 닭털 NaOH 가수분해물 또는/그리고 경화제로 닭털의 $H_2SO_4$ 가수분해물 및 30%의 가교제로 조제하였는데, 이 접착제의 고형분 함량은 가수분해 조건 및 가교제의 종류에 따라 28.3 - 44.8% 범위에 존재하였다. 이 접착제의 점도는 상온에서 전반적으로 높았으나, $50^{\circ}C$에서 측정한 결과 분사형 접착제로서 적용이 가능한 것으로 조사되었다. 접착제의 내수성을 비교하기 위하여 측정된 열수 불용해율은 5% 농도의 NaOH 수용액에서 반응시킨 닭털의 알칼리 가수분해물(CF-AK-5%)에 경화제로 5% 농도의 $H_2SO_4$ 수용액에서 반응시킨 닭털의 산가수분해물(CF-AC-5%)을 고형분함량 기준 10% 이상 첨가하여 제조하고 경화시킨 접착제에서 높았다. 또한 접착제 제조시 고형분 함량을 기준으로 30%가 첨가된 가교제별 열수 불용해율은 phenol-formaldehyde (PF), melamine-urea-formaldehyde (MUF), formalin 순으로 조사되었다. 닭털 접착제의 열수 불용해율을 섬유판 제조에 사용되고 있는 석유화학계 합성수지와 비교한 결과, CF-AC-5%에 가교제로 PF를 그리고 경화제로 CF-AC-5%를 첨가하여 조제한 접착제는 기존 멜라민-요소수지의 열수불용해율과 통계학적으로 차이가 없었으며, 가교제로 PF를 사용한 모든 접착제와 고형분 함량을 기준으로 55%의 CF-AK-5%, 15%의 CF-AC-5% 그리고 가교제로 30%의 MUF와 함께 제조한 접착제는 기존 요소수지를 대체할 수 있는 것으로 조사되었다. 이 결과를 토대로 적정한 조건에서 가수분해한 닭털은 목질계 판상재용 접착제의 원료로 사용이 가능할 것으로 판단된다.

Keywords

References

  1. Ahn, S.H. 2015. Effect of heating temperature and time of coffee waste on the adsorptivity of formaldehyde. J. of Korean Wood Science & Technology 43(3): 390-399. https://doi.org/10.5658/WOOD.2015.43.3.390
  2. American Society for Testing and Materials. 1993. Standard test methods for determination of percent nonvolatile content of liquid phenolic resins used for wood laminating. ASTM, ASTM D 4426, Philadelphia, PA, USA.
  3. Association of Official Analytical Chemists. 1990. Analytical methods for chemical composition, 15th ed. Academic Press, Inc., Arlington, TX, USA.
  4. Barbosa, A.P., Mano, E.B., Andrade, C.T. 2000. Tannin-based resins modified to reduce wood adhesive brittleness. For. Prod. J. 50(9): 89-92.
  5. Christiansen, A.W., Gillespie, R.H. 1986. Potential of carbohydrates for exterior-type adhesives. For. Prod. J. 36(7/8): 20-28.
  6. Kim, Y.B., Lee, K.S., Lee, N.H. 1998. Effects of physical processing on protein content and pepsin-digestibility of feather meals. J. of Korean Anim. Sci. 40(1): 103-110.
  7. Korea Forest Research Institute. 2013. Standard for the quality of wood pellets. Seoul, Republic of Korea.
  8. Kuo, M.L., Myers, D.J., Heemstra, H., Curry D., Adams, D.O., Stokke, D.D. 2001. Soybean-based adhesive resins and composite products utilizing such adhesives. U.S. Patent No. 6,306,997.
  9. Lambuth, A.L. 1989. Protein adhesives for wood. In Wood adhesives: Chemistry and Technology, Vol. II. Marcel Dekker, Inc., New York, NY, USA.
  10. Lee, J.G., Lee, S.M. 1998. Evaluation of soybean meal or feather meal as a partial substitute for fish meal in formulated diets for fat cod. J. of Aquaculture 11(4): 421-428.
  11. Lee, K.H. 1997. Chemical composition and biological feed value of autoclaved poultry by-products for poultry. Korea J, Poult. Sci. 24(4): 185-191.
  12. Ministry of Environment. 2003. Policy for managing the indoor air-quality of public facilities. ME No. 6911, Sejong, Republic of Korea.
  13. Oh, S.C., Ahn, S.H., Choi, I.G., Jeong, H.S., Yoon, Y.H., Yang, I. 2008. Development and application of okara-based adhesives for plywood panels. J. of Korean Wood Science & Technology 36(3): 30-38.
  14. Oh, Y., Seller Jr., T., Kim, M.G., Strickland, R.C. 1994. Evaluation of phenol-formaldehyde OSB resins modified with lignin residues from acid-hydrolyzed waste newsprint. For. Prod. J. 44(2): 25-29.
  15. Olivares, M., Aceituno, H., Neiman, G., Rivera, E., Seller Jr., T. 1995. Lignin-modified phenolic adhesives for bonding Radiata pine plywood. For. Prod. J. 45(1): 63-67.
  16. Pizzi, A., Scharfetter H.O. 1978. The chemistry and development of tannin-based adhesives for exterior plywood. J. of Applied Polymer Science 22(6): 1745-1761. https://doi.org/10.1002/app.1978.070220623
  17. Riebel, M.J., Torgusen, P.L., Roos, K.D., Anderson, D.E., Gruber, C. 1997. Bio-composite material and method of making. U.S. Patent No. 5,635,123.
  18. Steele, P.H., Kreibich, R.E., Steynberg, P.J., Hemingway, R.W. 1998. Finger jointing green southern yellow pine with a soy-based adhesive. Adhesive Age 8: 49-54.
  19. Yang, I., Ahn, S.H., Choi, I.G., Han, G.S., Choi, W.S., Oh, S.C. 2011. Preliminary study of rapeseed flour-based wood adhesives for making wood flooring. J. of Korean Wood Science & Technology 39(5): 451-458. https://doi.org/10.5658/WOOD.2011.39.5.451
  20. Yang, I., Ahn, S.H., Choi, I.G., Kim, H.Y., Oh, S.C. 2009. Adhesives formulated with chemically modified okara and phenol-resorcinol-formaldehyde for bonding fancy veneer onto high-density fiberboard. J. of Industrial and Engineering Chemistry 15(3): 398-402. https://doi.org/10.1016/j.jiec.2008.12.005
  21. Yang, I., Ahn, S.H., Choi, W.S., Kim, S.S., Oh, S.C. 2009. Bonding quality of adhesives formulated with okara hydrolyzates and phenol-formaldehyde resins for bonding fancy veneer onto high-density fiberboard. J. of Korean Wood Science & Technology 37(4): 388-396.
  22. Yang, I., Han, G.S., Ahn, S.H., Choi, I.G., Kim, Y.H., Oh, S.C. 2014. Adhesive properties of medium- density fiberboards fabricated with rapeseed flour-based adhesives. J. of Adhesion 90(4): 279-295. https://doi.org/10.1080/00218464.2013.793161
  23. Yang, I., Han, G.S., Choi, I.G.. Ahn, S.H., Oh, S.C. 2012. Properties of plywood bonded with adhesive resins formulated with enzymatically hydrolyzed rapeseed flour. J. of Korean Wood Science & Technology 40(3): 164-176. https://doi.org/10.5658/WOOD.2012.40.3.164
  24. Yang, I., Han, G.S., Choi, I.G., Kim, Y.H., Ahn, S.H., Oh, S.C. 2011. Development of adhesive resins formulated with rapeseed flour hydrolyzates for laminated veneer lumber and its performance evaluation. J. of Korean Wood Science & Technology 39(3): 221-229. https://doi.org/10.5658/WOOD.2011.39.3.229
  25. Yang, I., Han, G.S., Choi, I.G., Kim, Y.H., Ahn, S.H., Oh, S.C. 2012 Development of adhesive resins formulated with rapeseed flour hydrolyzates for medium-density fiberboard (MDF). J. of Korean Wood Science & Technology 40(3): 177-185. https://doi.org/10.5658/WOOD.2012.40.3.177
  26. Yang, I., Jeong, J.H., Han, G.S., Choi, I.G., Ahn, S.H., Oh, S.C. 2010. Development of adhesive resins formulated with rapeseed flour hydrolyzates for plywood panels. J. of Korean Wood Science & Technology 38(4): 392-401.
  27. Yang, I., Kuo, M.L., Myers, D.J. 2006. Bond quality of soy-based phenolic adhesives in southern pine plywood. J. of the American Oil Chemists' Society 83(3): 231-237. https://doi.org/10.1007/s11746-006-1198-7
  28. Yang, I., Kuo, M.L., Myers, D.J. 2005. Physical properties of hybrid poplar flakeboard bonded with alkaline phenolic soy adhesives. J. of Korean Wood Science and Technology 33(5): 66-75.
  29. Yang, I., Kuo, M.L., Myers, D.J., Pu, A.B. 2006. Comparison of protein-based adhesive resins for wood composites. J. of Wood Science 52(6): 503-508. https://doi.org/10.1007/s10086-006-0804-5
  30. Yang, K.K., Wang, X.L., Wang, Y.Z. 2007. Progress nanocomposite of biodegradable polymer. J. of Industrial and Engineering Chemistry 13(4): 485-500.
  31. Yang, I., Lee, K.H., Oh, S.C. 2013. Manufacture and performance evaluation of medium-density fiberboard made with coffee bean residue-wood fiber. J. of Korean Wood Science & Technology 41(4): 293-301. https://doi.org/10.5658/WOOD.2013.41.4.293
  32. Yang, I., Jeong, J.H., Jeon, M.J., Han, G.S., Ahn, S.H., Han, I.G., Kim, Y.H., Oh, S.C. 2010. Development of Environmentally friendly adhesives formulated with rapeseed flour obtained from the production of bio-diesel. J. of Korea Society of Waste Management 27(3): 234-242.
  33. Yang, I., Park, D.H., Choi, W.S., Oh, S.C., Ahn, D.U., Han, G.S. 2017. Reaction mechanism and curing characteristics of chicken feather-based adhesives and adhesive properties of medium-density fiberboard bonded with the adhesive resin. Korean Chemical Engineering Research (Submitted).
  34. Woo, B.J., Kim, H.J. 2015. Imbalance of supply and demand for chicken meat and its spread effect. Korea Rural Economic Institute, Seoul, Republic of Korea.

Cited by

  1. Adhesive and curing properties of chicken feather/blood-based adhesives for the fabrication of medium-density fiberboards 2018, https://doi.org/10.1080/00218464.2017.1371597