• Title/Summary/Keyword: Medium power system

Search Result 501, Processing Time 0.029 seconds

Research on Medium-power Wireless Power Transmission using Commercial Power Frequency (60Hz) (상용전원 주파수(60Hz)를 사용한 중전력 무선전력전송 연구)

  • Gi-Bum Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.497-506
    • /
    • 2024
  • In this paper, medium-power wireless power transmission is implemented using the commercial power frequency (60 Hz). Since general magnetic induction wireless power transmission devices use more than several tens of kHz, the commercial power frequency (60 Hz) cannot be used as is. Therefore an AC/DC converter is used to convert the 60 Hz power frequency into DC, and a high-frequency power amplifier is used to convert DC into several tens of kHz. In magnetic induction wireless power transmission, the AC/DC converter and high-frequency power amplifier are removed, and a extremely low frequency wireless power transmission(ELF-WPT) system using commercial frequency consisting of only transmitting resonance tank, transmitting coil, receiving resonance tank, and receiving coil is implemented, and verified through wireless power transmission experiments.

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.

Improved Modulation Scheme for Medium Voltage Modular Multi-level Converter Operated in Nearest Level Control (근사레벨제어로 동작하는 중전압 모듈형 멀티레벨 컨버터의 개선된 전압변조기법)

  • Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.285-296
    • /
    • 2017
  • This paper proposes an improved modulation scheme for the medium voltage modular multi-level converter (MMC), which operates in the nearest level control and applies in the medium voltage direct current (MVDC) system. In the proposed modulation scheme, the offset (neutral-to-zero output) voltage is adjusted, with the phase voltage magnitude, thereby maintaining a constant value with N+1 level in the controllable modulation index (MI) range. In order to confirm the proposed scheme's validity, computer simulations for the 22.9 kV - 25 MVA MMC were performed with PSCAD/EMTDC, as well as hardware experiments for the 380 V - 10 kVA MMC. The proposed modulation scheme offers to build a constant pole voltage regardless of the MI value, and to build a phase voltage with improved total harmonic distortion (THD).

Influences of Cathodic Protection and Coating Properties on the Corrosion Control of Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.242-249
    • /
    • 2005
  • A lot of parts in FGD (Flue Gas Desulfurization) systems of fossil-fuel power plants show the environments in which are highly changeable and extremely acidic corrosive medium according to time and locations, e.g. in duct works, coolers and re-heaters etc. These conditions are formed when system materials are immersed in fluid that flows on them or when exhausted gas is condensed into thin layered acidic medium to contact materials of the system walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of the condensed solution. To cathodically protect the metallic structures in extremely acidic fluid, the properties of the protective coatings on the metal surface were very important, and epoxy Novolac coating was applied in this work. On the base of acid immersion tests, hot sulfuric acid decreased the hardness of the coatings and reduced greatly the content of $Na_2O$, $Al_2O_3$, and $SiO_2$ among the main components of the coating. A special kind of CP(Cathodic Protection) system has been developed and tested in a real scale of the FGD facility. Applied coating for this CP system was peeled off and cracked in some parts of the facility. However, the exposed metal surface to extremely acidic fluid by the failure of the coatings was successfully protected by the new CP system.

A Study on the Coatings for CP System in the Environment in which Thin Layer of Extremely Acidic Fluids are Formed

  • Chang, H.Y.;So, I.S.;Jin, T.F.;Kim, Y.S.;Yoo, Y.R.;Kang, M.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • A lot of parts in FGD (Flue Gas Desulphurization) systems of fossil-fuel power plants show the environments in which are highly changeable and extremely acidic corrosive medium according to time and locations, e.g. in duct works, coolers and re-heaters etc.. These conditions are formed when system materials are immersed in fluid that flows on them or when exhausted gas is condensed into thin layered medium to contact materials of the system walls and roofs. The environments make troublesome corrosion and air pollution problems that are occurred from the leakage of the condensed solution. The frequent shut-down and repairing works of FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, even the super alloys and Teflon linings sometimes have not been good enough to preventing corrosion. Further more, they are expensive and not easily repairable in short periods of operation stops. In this work, new technology that is effective, economical and easily repairable has proposed to solve the corrosion problems in FGD facilities. This technology contains cathodic protection, coatings and remote monitoring-controlling systems.

Impedance Measurement and Matching Technique for Medium-Voltage Powerline Communication (고압전력선 통신을 위한 임피던스 측정 및 정합 방안 연구)

  • 이재조;유정훈;홍충선;이대영
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • Currently, high data rate PLC(Power Line Communications), up to 100 Mbps, which use frequency bandwidth between 2 MHz and 30 MHz is investigated very hard, and commercial PLC modem for low voltage powerline network (indoor) is coming soon into communication market. For the purpose of developing a fit communication system which has little distortion of signal and attenuation, it is surely necessary to know about channel environments of powerline. Especially, the impedance measurement of the powerline and impedance matching are very important. As is known, since medium-voltage powerline (22.9 ㎸) is still working, it is not so simple to measure the powerline impedance. In our study, a portable impedance measurement equipment is developed. It consists of coupling capacitor, a drain coil and impedance matching transformer. The equipment is easily connected to medium voltage line and impedance of power line is measured using a network analyzer. Also, measurement results are used for impedance matching of PLC signal. In fact, matching transformer with several different impedances are used. The matching transformer is connected between coupling capacitor and signal port. In this paper, the developed portable impedance measurement equipment and impedance measurement results are presented. Also impedance matching technique using matching transformers will be explained. We showed the result of the improved performance by the impedance matching.

Smokeless Starting for 4 Cycle Medium Speed Diesel Engine (4행정 중속 디젤기관의 스모크리스 시동)

  • Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.11-16
    • /
    • 2014
  • Although smoke emitted from ships is not included in IMO(International Maritime Organiztion) regulation yet, it is one of the substance what is polluting mainly the air. Especially, its concentration is very high when an engine is started and a load is rapidly changed. This is caused by unburned fuel what is injected more than necessary quantity after combustion period. It is possible to decrease smoke concentration emitted at starting engine by controlling fuel injection quantity, but it is concerned that time to rated speed must be spent. Then a governor what can reduce the smoke concentration without a loss of time to rated speed is needed. We adopted a electro-hydraulic governor what can control dual fuel start limit function and achieved very low level of smoke concentration without greater the loss of time to rated speed.

Optimum Gain Distribution of the Ampilfiers in High Power YLF($Nd^{3+}$)-Phosphate Glass($Nd^{3+}$) Laser System

  • CHi, Kyeong-Koo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.20-25
    • /
    • 1989
  • The nonlinear, time dependent photon transport equations of Frantz and Nodvik, which describe the amplification of an optical pulse in an active medium, are modified to a simpler equation which describes only the amplification of energy. with this equation, the output energy of the high power YLF(Nd3+)-Phosphate Glass(Nd3+) Laser System is calculated. When the stored energy density Est is 0.10J/㎤, 0.16J/㎤, 0.228J/㎤, and 0.50J/㎤, and with the assumption of uniform population inversion density, the final output energy of this laser system is 5.38J, 176J, 317J, and 283J, respectively. The gain saturation causes distortion of the output beam. This phenomenon is described in detail at the first three rod amplifier systems in the case of E=0.228J/㎤. The peak current and decay time constant of the flashlamps, which are used to obtain population inversion in the active medium, are investigated. The flashlamp driving circuit which has optimum operational performance should have {{{{ SQRT { LC} }} time about 100$\mu$sec.

  • PDF

Reliability Improvement of H-Bridge Multi-level Inverter for Medium-Voltage & High-Power Induction Motor Drives (고전압 대용량 유도전동기 구동용 H-브릿지 멀티레벨 인버터의 신뢰성 향상)

  • Park, Young-Min;Lee, Kwang-Hwan;Lee, Se-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • This paper proposes the reliability improvement of H-Bridge Multi-level (HBM) inverter. This reliability can be implemented through modularization of power circuit, distribution of controller, duplication of controller and communication, and continuous operation method in case of power cell failure for driving medium-voltage & high-power induction motor. It is shown that the modularization and expansion characteristics of the HBM inverter are improved since the individual inverter modules operate more independently when using the proposed concept. Also the fault tolerance is increased by using power cell bypass. The proposed design and control methods are described in detail and the validity of the proposed system is verified experimentally in various industrial fields.

The Evaluation of a General Purpose Bale System Performance and Its Bale Quality

  • Chang, Dongil;Chung, Sun-Ok;Cho, Byoung-Kwan;Park, Dongseok;Sung, Namseok;Kim, Jungchul;Lee, Inhyun;Park, Jutaek
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.223-227
    • /
    • 2013
  • Purpose: The objectives of this study were to develop a general purpose baler system that is appropriate for the domestic forage cultivation environment and operated by the medium size tractor for production of bale silage made of green forage crops, and to test its performance. Methods: In a first experiment, the time of formation per one bale and densities of bales that are produced from bale system, were measured. In a second experiment, power requirement was measured by a power measurement system manufactured during bale system work. Results: The power measurement system was constructed with strain-gage sensors to measure torque of a PTO axle and proximity sensor to measure rotating speed of a PTO axle. Thus, the power requirement was calculated by PTO torque and PTO rotating speed. For evaluation of bale quality, the samples of bales were analyzed for contents of moisture, ADF, NDF and TDN. Conclusions: If the results of this study will be utilized, the coefficient of utilization of agricultural machinery will be increased by the operation of a medium size tractor that is a major disseminated tractor in farm, and it will contribute tremendously to make a forage production base for livestock farms.