• Title/Summary/Keyword: Medical error

Search Result 1,106, Processing Time 0.028 seconds

Characteristics of Needle Insertion Performance of Automated Biopsy Device for Robotic Needle Insertion Type Intervention: Insertion Depth and Accuracy (로봇 자동화 바늘삽입형 중재시술을 위한 자동화 생검장치의 바늘삽입 특성: 바늘삽입 깊이 및 삽입정확도)

  • Moon, Youngjin;Choi, Jaesoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.565-570
    • /
    • 2016
  • This paper presents the characteristics related to needle insertion of a robotic device for the automated biopsy procedure. The automated biopsy device, a main component of the robotic needle insertion type intervention system, allows performance of the full biopsy procedure, except for anesthesia, without direct handling of a radiologist or a tele-operated control. In this study, the needle length parameters corresponding to various insertion depths and precision for needle insertion of the automated biopsy device, are discussed. There were two combinations of needle length parameters for appropriate needle insertion and motion capture-based measurement was performed; 0.156 mm error for the 90 mm length commanded insertion displacement was measured. The pre-defined goal is a maximum 1 mm error and thus our measured error is within the acceptable range. In the repeatability check, it was also shown that the device can implement a highly accurate insertion.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.

Packet-Level Scheduling for Implant Communications Using Forward Error Correction in an Erasure Correction Mode for Reliable U-Healthcare Service

  • Lee, Ki-Dong;Kim, Sang-G.;Yi, Byung-K.
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • In u-healthcare services based on wireless body sensor networks, reliable connection is very important as many types of information, including vital signals, are transmitted through the networks. The transmit power requirements are very stringent in the case of in-body networks for implant communication. Furthermore, the wireless link in an in-body environment has a high degree of path loss (e.g., the path loss exponent is around 6.2 for deep tissue). Because of such inherently bad settings of the communication nodes, a multi-hop network topology is preferred in order to meet the transmit power requirements and to increase the battery lifetime of sensor nodes. This will ensure that the live body of a patient receiving the healthcare service has a reduced level of specific absorption ratio (SAR) when exposed to long-lasting radiation. We propose an efficientmethod for delivering delay-intolerant data packets over multiple hops. We consider forward error correction (FEC) in an erasure correction mode and develop a mathematical formulation for packet-level scheduling of delay-intolerant FEC packets over multiple hops. The proposed method can be used as a simple guideline for applications to setting up a topology for a medical body sensor network of each individual patient, which is connected to a remote server for u-healthcare service applications.

Legal Interest in Damages Regarding Loss of Treatment Chance (치료기회상실로 인한 손해배상에 있어서 피침해법익)

  • Eom, Bokhyun
    • The Korean Society of Law and Medicine
    • /
    • v.20 no.3
    • /
    • pp.83-139
    • /
    • 2019
  • Recognition of liability for damages due to medical malpractice has been developed largely on the basis of two paths. First is the case where there is an error in a physician's medical practice and this infringes upon the legal interests of life and body, and the compensation for monetary and non-monetary damages incurred from such infringement on life and body becomes an issue. Second is the case where there is a breach of a physician's duty of explanation that results in a infringement on the patient's right of autonomous decision, and the compensation for non-monetary damages incurred from such infringement becomes an issue. However, even if there is a medical error, since it is difficult to prove the causation between the medical error of a physician and the infringement upon legal interests, the physician's responsibility for damage compensation is denied in some cases. Consider, for example, a case where a patient is already in the final stage of cancer and has a very low possibility of a complete recovery even if proper treatment is received from the physician. Here, it is not appropriate to refuse recognition of any damage compensation based on the reason that the possibility of the patient dying is very high even in the absence of a medical error. This is so because, at minimum, non-monetary damage such as psychological suffering is incurred due to the physician's medical error. In such a case, our courts recognize on an exceptional basis consolation money compensation for losing the chance to receive proper treatment. However, since the theoretical system has not been established in minutiae, what comes under the benefit and protection of the law is not clearly explicated. The recent discourse on compensating for damages incurred by patients, even when the causation between the physician's medical error and infringement upon the legal interests of life and body is denied, by establishing a new legal interest is based on the "legal principle of loss of opportunity for treatment." On what should be the substance of the new legal interest, treatment possibility argument, expectation infringement argument, considerable degree of survival possibility infringement argument and loss of opportunity for treatment argument are being put forth. It is reasonable to see the substance of this protected legal interest as "the benefit of receiving treatment appropriate to the medical standard" according to the loss of opportunity for treatment argument. The above benefit to the patient is a value inherent to human dignity that should not be infringed upon or obstructed by anyone, and at the same time, it is a basic desire regarding life and a benefit worthy of protection by law. In this regard, "the benefit of receiving treatment appropriate to the medical standard" can be made concrete as one of the general personal rights related to psychological legal interest.

Estimation of Disease Code Accuracy of National Medical Insurance Data and the Related Factors (의료보험자료 상병기호의 정확도 추정 및 관련 특성 분석 -법정전염병을 중심으로-)

  • Shin, Eui-Chul;Park, Yong-Mun;Park, Yong-Gyu;Kim, Byung-Sung;Park, Ki-Dong;Meng, Kwang-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.3 s.62
    • /
    • pp.471-480
    • /
    • 1998
  • This study was undertaken in order to estimate the accuracy of disease code of the Korean National Medical Insurance Data and disease the characteristics related to the accuracy. To accomplish these objectives, 2,431 cases coded as notifiable acute communicable diseases (NACD) were randomly selected from 1994 National Medical Insurance data file and family medicine specialists reviewed the medical records to confirm the diagnostic accuracy and investigate the related factors. Major findings obtained from this study are as follows : 1. The accuracy rate of disease code of NACD in National Medical Insurance data was very low, 10.1% (95% C.I. : 8.8-11.4). 2. The reasons of inaccuracy in disease code were 1) claiming process related administrative error by physician and non-physician personnel in medical institutions (41.0%), 2) input error of claims data by key punchers of National Medical Insurer (31.3%) and 3) diagnostic error by physicians (21.7%). 3. Characteristics significantly related with lowering the accuracy of disease code were location and level of the medical institutions in multiple logistic regression analysis. Medical institutions in Seoul showed lower accuracy than those in Kyonngi, and so did general hospitals, hospitals and clinics than tertiary hospitals. Physician related characteristics significantly lowering disease code accuracy of insurance data were sex, age group and specialty. Male physicians showed significantly lower accuracy than female physicians; thirties and fortieg age group also showed significantly lower accuracy than twenties, and so did general physicians and other specialists than internal medicine/pediatric specialists. This study strongly suggests that a series of policies like 1) establishment of peer review organization of National Medical Insurance data, 2) prompt nation-wide expansion of computerized claiming network of National Medical Insurance and 3) establishment and distribution of objective diagnostic criteria to physicians are necessary to set up a national disease surveillance system utilizing National Medical Insurance claims data.

  • PDF

Error Analysis in the Numerical Solution of Rayleigh Integral (Rayleigh 적분의 수치해에 관한 오차분석)

  • 이금원;김병기
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 1990
  • The numerical evaluation of Rayleigh's integral for the sound source reconstruction can be speeded up by the use of angular frequency propagation method and the FFT. However, are several source of errors involved during the reconstruction. Besides the aliasing error due to undersampling in space, the wrap around error. which is caused by undersampling the kernel functionin frequency domain, and windowing effect are present. We found that there is no replicated source problem and the windowing effect is due to the windowing the kernel function In frequency domain, and, xero padding is always required to improve the quality of reconstruction.

  • PDF

The results of recognition survey for patient safety culture in a hospital (일개병원의 환자안전문화 인식도 조사결과)

  • Kim, Ki-Young;Han, Hye-Mi;Park, Yu-Ri;Kim, Sun-Ae;Shin, Hyun-Soo
    • Quality Improvement in Health Care
    • /
    • v.22 no.2
    • /
    • pp.75-90
    • /
    • 2016
  • Objectives: This study measures the level of cognition of employee's patient safety culture and evaluates the current level through comparing the results to external levels. Ultimately it is performed to construct a strategic improvement plan through the basic database for patient's safety culture. Methods: A questionnaire survey of self reporting type was carried out using structured questionnaire of the patient's safety culture for employees currently employed in a hospital. Total responders was 1,129 and a response rate was 54.6%. The survey results were calculated with a percent positive response, and the current level was evaluated by comparing with the survey results of a hospital (2009 and 2014) and the survey result of The Agency for Healthcare Research and Quality(2014). Results: Sub-dimension of high percent positive response for each area were 'teamwork within hospital units' (80%), 'feedback & communication about error' (73%) and 'supervisor/manager expectations & actions promoting safety' (67%). Meanwhile, 'teamwork across hospital units' (31%), 'hospital management support for patient safety' (29%), 'staffing' (27%) and 'non-punitive response to error' (17%) were relatively low percent positive response. Compared to the survey results of AHRQ (2014) for each area, 'teamwork within hospital units' (80%), 'feedback & communication about error' (73%), 'frequency of event reporting' (66%) were at the top 50% percentile level and the remaining sub-dimensions showed a very low level in the lower 10% percentile area. Conclusion: In order to establish a system for patient safety culture within the hospital and evaluate the effect on this, it is necessary to periodically evaluate the patient's safety culture and establish regulations on hospital safety culture to comply with this.

Measurement Error Variance Estimation Based on Complex Survey Data with Subsample Re-Measurements

  • Heo, Sunyeong;Eltinge, John L.
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.553-566
    • /
    • 2003
  • In many cases, the measurement error variances may be functions of the unknown true values or related covariates. This paper considers design-based estimators of the parameters of these variance functions based on the within-unit sample variances. This paper devotes to: (1) define an error scale factor $\delta$; (2) develop estimators of the parameters of the linear measurement error variance function of the true values under large-sample and small-error conditions; (3) use propensity methods to adjust survey weights to account for possible selection effects at the replicate level. The proposed methods are applied to medical examination data from the U.S. Third National Health and Nutrition Examination Survey (NHANES III).

Analysis of Chemotherapy Prescribing Errors Detected by Pharmacists (약사에 의해 탐지된 항암제 처방오류 분석)

  • Lee, Hyun-Ju;Yang, Mi-Kyung;Jo, Ju-Hee;Kim, Sung-Eun;Seok, Hyun-Ju;Kim, Hyun-Ah
    • Korean Journal of Clinical Pharmacy
    • /
    • v.20 no.2
    • /
    • pp.120-127
    • /
    • 2010
  • Objective: The purpose of this study was to identify the type and frequency of chemotherapy-related prescribing errors and assess the pharmacist intervention in preventing potential harm. Methods: This study was performed in satellite pharmacy of oncology/hematology unit in tertiary teaching hospital from April to September, 2009. All chemotherapy prescribing errors detected by pharmacists were recorded. Frequency and characteristics of prescribing errors were analyzed. Pharmacists reviewed 28, 495 chemotherapy orders from 12,719 patients during 6-month periods. Results: A total of 835 prescription errors (2.93%) in 734 patients (5.77%) were detected by pharmacists. Alkylating agents (37.6%) followed by antimetabolite (23.35%), and mitotic inhibitors (21.44%) were the most prevalent classes in which errors occurs. The most common types of error detected were incorrect dose (34%), incorrect solution (33%), incorrect route (9%) and omission errors (8%). Changes in chemotherapy order due to pharmacists' intervention occurred in all error cases. Conclusion: Pharmacists' intervention in reviewing chemotherapy and drug orders intercepted potential harm due to prescribing errors. The current study provided strategies for reduction of medication errors.

Imputation of Medical Data Using Subspace Condition Order Degree Polynomials

  • Silachan, Klaokanlaya;Tantatsanawong, Panjai
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.395-411
    • /
    • 2014
  • Temporal medical data is often collected during patient treatments that require personal analysis. Each observation recorded in the temporal medical data is associated with measurements and time treatments. A major problem in the analysis of temporal medical data are the missing values that are caused, for example, by patients dropping out of a study before completion. Therefore, the imputation of missing data is an important step during pre-processing and can provide useful information before the data is mined. For each patient and each variable, this imputation replaces the missing data with a value drawn from an estimated distribution of that variable. In this paper, we propose a new method, called Newton's finite divided difference polynomial interpolation with condition order degree, for dealing with missing values in temporal medical data related to obesity. We compared the new imputation method with three existing subspace estimation techniques, including the k-nearest neighbor, local least squares, and natural cubic spline approaches. The performance of each approach was then evaluated by using the normalized root mean square error and the statistically significant test results. The experimental results have demonstrated that the proposed method provides the best fit with the smallest error and is more accurate than the other methods.