• Title/Summary/Keyword: Medical electron

Search Result 821, Processing Time 0.031 seconds

Ultrastructure of the fertilized egg envelopes in Ancistrus cirrhosus, Loricariidae, Teleostei

  • Dong Heui Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.13.1-13.7
    • /
    • 2020
  • We examined the morphology of fertilized egg and ultrastructures of fertilized egg envelopes of Ancistrus cirrhosus belong to Loricariidae using light and electron microscopes. The fertilized eggs formed a mass on the spawning place and were yellowish, spherical, non-transparent, demersal, adhesive, and a narrow perivitelline space. But, the adhesiveness of fertilized eggs was disappeared after spawning excluding contact parts. The micropyle with funnel shape was surrounded by 15-19 furrow lines of egg envelope in a spoke-like pattern. The outer surface of egg envelope has smooth side and inner surface of egg envelope was rough with grooves. Also, the total thickness of the fertilized egg envelope was about 32.58 ± 0.85 ㎛ (n = 20), and the fertilized egg envelope consisted of three layers, an outer adhesive electron-dense layer, a middle layer with low electron density and an inner electron-dense layer with grooves in counter structure from other most teleost. Collectively, these morphological characteristics and adhesive property of fertilized egg, and ultrastructures of micropyle, outer surface, and section of fertilized egg envelope are showed species specificity.

Dose absorption of Omicron variant SARS-CoV-2 by electron radiation: Using Geant4-DNA toolkit

  • Mehrdad Jalili Torkamani;Chiman Karami;Pooneh Sayyah-Koohi;Farhood Ziaie;Seyyedsina Moosavi;Farhad Zolfagharpour
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2421-2427
    • /
    • 2024
  • In this research, the Omicron variant of the SARS-CoV-2 virus was simulated and exposed to electron radiation with up to 20 keV energy. Absorbed energy was measured for spike protein, nucleocapsid protein, and envelope of the virus. Simulations were performed by Geant4-DNA in a water environment at temperature of 20 ℃ and pressure of 1 atm. Since the viral RNA is kept inside the nucleocapsid protein, damage to this area could destroy the viral RNA strand and create an inactive virus. Our findings showed that electron beams with an energy of 2.5 keV could cause a maximum absorption dose and consequently maximum damage to the nucleocapsid and effectively be used for inactivation virus.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

Target Size Dependence of Spatial Resolution in Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Kanai, Tatsuaki;Sasaki, Hitomi;Nanbu, Syuya
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.94-96
    • /
    • 2002
  • In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.

  • PDF

Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Cho, Sungkoo;Jo, Kwanghyun;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1016-1023
    • /
    • 2022
  • In proton therapy, a highly conformal proton dose can be delivered to the tumor by means of the steep distal dose penumbra at the end of the beam range. The proton beam range, however, is highly sensitive to range uncertainty, which makes accurately locating the proton range in the patient difficult. In-vivo range verification is a method to manage range uncertainty, one of the promising techniques being prompt gamma imaging (PGI). In earlier studies, we proposed gamma electron vertex imaging (GEVI), and constructed a proof-of-principle system. The system successfully demonstrated the GEVI imaging principle for therapeutic proton pencil beams without scanning, but showed some limitations under clinical conditions, particularly for pencil beam scanning proton therapy. In the present study, we upgraded the GEVI system in several aspects and tested the performance improvements such as for range-shift verification in the context of line scanning proton treatment. Specifically, the system showed better performance in obtaining accurate prompt gamma (PG) distributions in the clinical environment. Furthermore, high shift-detection sensitivity and accuracy were shown under various range-shift conditions using line scanning proton beams.

Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth

  • Olek, Aneta;Klimek, Leszek;Boltacz-Rzepkowska, Elzbieta
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.83.1-83.14
    • /
    • 2020
  • Background: Bovine and porcine teeth are often used in in vitro experiments as substitutes of human teeth. Objectives: The aim of the present study was to perform a comparative analysis of enamel morphology of permanent human, bovine and porcine teeth under the scanning electron microscope. Methods: As many as 10 human, 10 bovine, and 10 porcine teeth were studied. All the teeth were sectioned and the halves were randomly divided into 2 groups according to the examined tissue (vestibular enamel at the mid-height of the dental crown and in the cervical area). Human and bovine enamel was etched for 15 sec and porcine enamel for 30 sec. The scanning electron microscope analysis was performed. The length and width of enamel prisms were determined with the "Met-Ilo" 1.1 computer program. Results: All enamel samples revealed the same etching pattern-Silverstone's type 2. Bovine enamel showed a similar porosity and the amount of interprismatic enamel compared to human enamel while the amount and width of interprismatic enamel bands in porcine enamel were evidently greater. The shape of the porcine prisms was visually similar to human prisms, although dimensions were significantly different. However, bovine prisms differed in form and appeared to be distinctly elongated. Conclusions: Reported findings indicate that the results of experimental studies carried out on bovine and porcine enamel should not be compared with the results obtained on human enamel.

The Effect of the CT Number for Each CT on Dose Calculation (CT 기종에 따른 CT 수의 변화가 선량계산에 미치는 영향)

  • Cho Kwang Hwan;Lee Suk;Cho Sam Ju;Lim Sangwook;Huh Hyun Do;Min Chul Kee;Cho Byung-Chul;Kim Yong Ho;Choi Doo Ho;Kim Eun Seog;Kwon Soo Il
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.161-165
    • /
    • 2005
  • The CT number corresponds to electron density and its influence on dose calculation was studied. Five kinds of CT scanners were used to obtain Images of electron density calibration phantom (Gammex RMI 467), Then the differences between CT numbers for each scanners were ${\pm}2\%$ In homogeneous medium and $9.5\%$ in high density medium. In order to Investigate the influence of CT number to dose calculation, patients' thoracic CT images were analyzed. The maximum dose difference was $0.48\%$ for each organ. It acquired the phantom Images inserted high density material in the water phantom. Comparing the doses calculated with CT Images from each CT scanner, the maximum dose difference was $2.1\%$ in 20 cm in depth. The exact density to CT number conversion according to CT scanner is required to minimize the uncertainty of dose depends on CT number Especially the each hospital with various CT scanners has to discriminate CT numbers for each CT scanner. Moreover a periodic quality assurance is required for reproducibility of CT number.

  • PDF

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.

Ultrastructural changes in cristae of lymphoblasts in acute lymphoblastic leukemia parallel alterations in biogenesis markers

  • Ritika Singh;Ayushi Jain;Jayanth Kumar Palanichamy;T. C. Nag;Sameer Bakhshi;Archna Singh
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.20.1-20.12
    • /
    • 2021
  • We explored the link between mitochondrial biogenesis and mitochondrial morphology using transmission electron microscopy (TEM) in lymphoblasts of pediatric acute lymphoblastic leukemia (ALL) patients and compared these characteristics between tumors and control samples. Gene expression of mitochondrial biogenesis markers was analysed in 23 ALL patients and 18 controls and TEM for morphology analysis was done in 15 ALL patients and 9 healthy controls. The area occupied by mitochondria per cell and the cristae cross-sectional area was observed to be significantly higher in patients than in controls (p-value=0.0468 and p-value<0.0001, respectively). The mtDNA copy numbers, TFAM, POLG, and c-myc gene expression were significantly higher in ALL patients than controls (all p-values<0.01). Gene Expression of PGC-1α was higher in tumor samples. The analysis of the correlation between PGC-1α expression and morphology parameters i.e., both M/C ratio and cristae cross-sectional area revealed a positive trend (r=0.3, p=0.1). The increased area occupied by mitochondria and increased cristae area support the occurrence of cristae remodelling in ALL. These changes might reflect alterations in cristae dynamics to support the metabolic state of the cells by forming a more condensed network. Ultrastructural imaging can be useful for affirming changes occurring at a subcellular organellar level.