• Title/Summary/Keyword: Medical dosimetry

Search Result 383, Processing Time 0.02 seconds

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF

Performance test of urine bioassay through participation in the NRIP (NRIP 참여를 통한 소변시료 바이오어세이 성능검사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Lee, Seung-Sook;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • Urine bioassay has been widely used for internal dosimetry due to simple process of sampling and measurement. In this paper, we participated in the NRIP (NIST Radiochemistry Intercomparison Program) hosted by US NIST to carry out a reliable performance test of urine bioassay and introduced the measurement method and results of NRIP-2013. In customary exercise with 60 days of reporting time, bioassay results of 12 radionuclides in the synthetic urine samples were acceptable based on the performance criteria of ANSI N13.30. In emergency preparedness exercise with 8 hours of reporting time, bioassay results of 9 radionuclides showed that differences ranged from -35% to 45%. However, we concluded that urine bioassay applied for emergency preparedness exercise would be applicable for rapid screening and estimation of internal exposure within a difference of ${\pm}45%$ in the event of radiological accidents.

Quality Control of Radiation Dosimetry Service (개인피폭선량 측정기관의 품질관리기준 개발)

  • Lee, Jun-Haeng;Lee, Sang-Bock;Chang, Kun-Jo;Lee, Kwang-Yong;Lee, Hyun-Koo;Kim, Hyeog-Ju;Jin, Gye-Hwan
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2009
  • We have developed standards based on international criterions for the quality control of dose tested by the measurement institutions of individual exposure doses through improving the reliability of data on the exposure dose of individuals working in radioactive environment and securing the accuracy and reliability of individual dose measurements. Laws related to radiation dose applied to domestic institutions refer to ANSI N13.11.1993, but currently, in U.S. and some other countries the measurement of radiation doses is based on ANSI N13.11.2001 that reduced test categories and tightened the standards. We made efforts to simplify the standards and to reduce the number of dosimeters required in experiment, and avoided preventing or hindering the use of future technologies not approved under the current law such as glass dosimeter and optical stimulation dosimeter. The Quality Management Manual of Radiation Dosimetry Service, Assessment Manual of Radiation Dosimetry Service Accreditation Program, and the Personnel Dosimetry Performance. Criteria for Testing are documents applicable in supervising laboratories.

  • PDF

Dose Volume Histogram Analysis for Comparison of Usability of Linear Accelerator Flattening Filter

  • Ji, Yun-Sang;Dong, Kyung-Rae;Ryu, Jae-Kwang;Choi, Ji-Won;Kim, Mi-Hyun
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.297-302
    • /
    • 2018
  • The wedge filter has two movements, fixed and dynamic. In this study, the depth dose distribution was analyzed to determine the stability of the dose distribution and dose volume histograms obtained by evaluating the usability of the critical normal tissue dose around the tumor dose. The depth dose was analyzed from the dose distribution from a Linac (6 MV and 10 MV irradiation field of energy $20{\times}20cm^2$, wedge filter with a SSD of 100 cm and $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ Y1-in (Left -7 cm), Y2-out(Right +7 cm). To analyze the fluctuations of the depth dose, a fixed wedge and dynamic wedge toe portion was examined according to the energy and angle because the size of the fluctuations was included in the error bound and did not show significant differences. The neck, breast, and pelvic dosimetry in tumor tissue are measured more commonly with a dynamic wedge than a fixed wedge presumably due to the error range. On the other hand, dosimetry of the surrounding normal tissue is more common using a fixed wedge than with a dynamic wedge.

Dosimetric Analysis of Respiratory-Gated RapidArc with Varying Gating Window Times (호흡연동 래피드아크 치료 시 빔 조사 구간 설정에 따른 선량 변화 분석)

  • Yoon, Mee Sun;Kim, Yong-Hyeob;Jeong, Jae-Uk;Nam, Taek-Keun;Ahn, Sung-Ja;Chung, Woong-Ki;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The gated RapidArc may produce a dosimetric error due to the stop-and-go motion of heavy gantry which can misalign the gantry restart position and reduce the accuracy of important factors in RapidArc delivery such as MLC movement and gantry speed. In this study, the effect of stop-and-go motion in gated RapidArc was analyzed with varying gating window time, which determines the total number of stop-and-go motions. Total 10 RapidArc plans for treatment of liver cancer were prepared. The RPM gating system and the moving phantom were used to set up the accurate gating window time. Two different delivery quality assurance (DQA) plans were created for each RapidArc plan. One is the portal dosimetry plan and the other is MapCHECK2 plan. The respiratory cycle was set to 4 sec and DQA plans were delivered with three different gating conditions: no gating, 1-sec gating window, and 2-sec gating window. The error between calculated dose and measured dose was evaluated based on the pass rate calculated using the gamma evaluation method with 3%/3 mm criteria. The average pass rates in the portal dosimetry plans were $98.72{\pm}0.82%$, $94.91{\pm}1.64%$, and $98.23{\pm}0.97%$ for no gating, 1-sec gating, and 2-sec gating, respectively. The average pass rates in MapCHECK2 plans were $97.80{\pm}0.91%$, $95.38{\pm}1.31%$, and $97.50{\pm}0.96%$ for no gating, 1-sec gating, and 2-sec gating, respectively. We verified that the dosimetric accuracy of gated RapidArc increases as gating window time increases and efforts should be made to increase gating window time during the RapidArc treatment process.

Quality Correction for Ir-192 Gamma Rays in Air Kerma Strength Dosimetry Using Cylindrical Ionization Chambers (원통형 전리함을 이용한 Ir-192 선원에 대한 공기커마세기 측정 시 선질보정에 관한 연구)

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Kim, Ki-Hwan;Oh, Young-Kee;Kim, Soo-Kon;Lee, Kang-Kyoo;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • The quality correction in the air kerma dosimetry for Ir-192 using farmer type ionization chambers calibrated by Co-60 quality is required. In this study we determined quality factor ($k_u$) of two ionization chambers of PTW-N30001 and N23333 for Ir-192 source using dosimetric method. The quality factors for energy spectrum of microSelectron were determined as $k_u$=1.016 and 1.017 for PTW-N30001 and N23333 ionization chambers respectively. We applied quality factors in air kerma dosimetry for microSelectron source and compared with reference values. As a results we found that the differences between reference air kerma rate and measured it with and without quality correction were about -0.5% and -2.0% respectively.

  • PDF

Characteristics of dose distribution for virtual wedge (가변형 쐐기필터의 선량분포에 관한 특성)

  • 김부길;김진기
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • We was investigate the dosimetric characteristics of the virtual wedge and it compared to the conventional fixed wedge. Also we was evaluate the quality factor of the experimental multi-channel dosimetry system for virtual wedge. Recently virtual wedge technique and wedge fraction methods are available through the computer controlled asymmetric collimator or the independent jaw in medical linear accelerator for radiation therapy. The dosimetric characteristics are interpreted by radiation field analyzer RFA-7 system and PTW-UNIDOS system. Experimental multi-channel dosimetry system for virtual wedge was consists of the electrometer, the solid detector and array phantom. The solid detectors were constructed using commercially diodes for the assessment of quality assurance in radiotherapy. And it was used for the point dose measuring and field size scanning. The semiconductor detector and ion chamber were positioned at a dmax, 5 cm, 10 cm, 20 cm depth and its specific ratio was determined using a scanning data. Wedge angles in fixed and virtual type are compared with measurements in water phantom and it is shown that the wedge angle 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$were agree within 1$^{\circ}$ degree in 6, 10 MV photon beams. In PDD and beam flatness, experimental multi-channel disimetry system was capable of reproduceing the measured values usually to within $\pm$2.1% the statistical uncertainties of the data. It was used to describe dosimetric characteristics of virtual wedge in clinical photon beams. Also we was evaluate optimal use of the virtual wedge and improve the quality factor of the experimental multi-channel dosimetry system for virtual wedge.

  • PDF

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.