• Title/Summary/Keyword: Medical dosimetry

Search Result 383, Processing Time 0.028 seconds

Electron Dosimetry of Shaped Fields on Mevatron KD 67-7467 (Mevatron KD 67-7467의 변형조사면에 대한 전자선 선량측정)

  • U Hong;Samuel Ryu;H. D. Kang
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.109-122
    • /
    • 1990
  • A method of making inserts for shaped fields in electron beam therapy on the Mevatron KD 67-7467 Linear Acclerator is introduced. The inserts are made from an alloy called Lipowitz metal. These are designed to fit the inside of the standard Siemens cones. Studies have shown that this method does not adversely affect field flatness. However, if the ratio of shaped field to open field is greater than about 70%, the output dose is significantly changed by the inserts. Because the cone ratios for the fields do not follow the open cone ratio curves on the Mevatron KD 67-7467, we separated the cone ratio suggested by Biggs into two parts, the insert ratio and the cone factor. The dosimetry for these shaped beams has been investigated extensively.

  • PDF

The Accuracy of the Calculated Dose for a Cardiac Implantable Electronic Device

  • Sung, Jiwon;Son, Jaeman;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.150-154
    • /
    • 2019
  • The objective of this study is to monitor the radiation doses delivered to a cardiac implantable electronic device (CIED) by comparing the absorbed doses calculated by a commercial treatment planning system (TPS) to those measured by an in vivo dosimeter. Accurate monitoring of the radiation absorbed by a CIED during radiotherapy is necessary to prevent damage to the device. We conducted this study on three patients, who had the CIED inserted and were to be treated with radiotherapy. Treatment plans were generated using the Eclipse system, with a progressive resolution photon optimizer algorithm and the Acuros XB dose calculation algorithm. Measurements were performed on the patients using optically stimulated luminescence detectors placed on the skin, near the CIED. The results showed that the calculated doses from the TPS were up to 5 times lower than the measured doses. Therefore, it is recommended that in vivo dosimetry be conducted during radiotherapy for CIED patients to prevent damage to the CIED.

Direct Calculation of TRS-398 Quality Correction Factors for High Energy Photons (고에너지 광자선에 대한 TRS-398 선질보정인자의 직접 계산)

  • Shin Kyo-Chul;Oh Young-Kee;Kim Jeung-Kee;Kim Jhin-Kee;Kim Ki-Hwan;Jeong Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • In order to apply the TRS-398 dosimetry protocol developed by IAEA we directly calculated the quality correction factors for high energy photons. The calculations were peformed for seven commercial cylindrical chambers (A12, IC70, N23333, N30001, N30006, NE2571, PR06C/G). In comparison with quality correction factors given by TRS-398 our results were in good agreement within ${\pm}0.3%$ (maximum ${\pm}0.3%$) for all chambers and photon qualities.

  • PDF

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Dosimetric Measurement for 4MV X-Ray Linear Accelerator with Asymmetric Collimator System (4MV 선형가속기에서의 비대칭 콜리메이터의 선량측정)

  • 이병용;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 1990
  • Dosimetric measurement of an asymmetric collimator system was performed, using water phantom system for 4MV X-ray linear accelerator. We have studied the system of dose calculation with those measured result. We compared the field size factor and the percent depth dose for asymmetric collimator to those factor for symmetric fields. The results show that we can use symmetric field data directly within 1% error, if we consider the off axis ratio(OAR).

  • PDF

The Role of Intensity Modulated Radiotherapy in Cancer Treatment

  • Cheung, Kin-Yin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.6-8
    • /
    • 2002
  • Intensity modulated radiotherapy (IMRT) is an advanced but expensive form of 3-dimensional conformal radiation therapy technique. While the initial clinical data appear to be promising for some treatment sites, the cost effectiveness of the treatment modality has yet to be justified by long-term clinical outcome. This presentation reviews the potential efficacy and limitation of IMRT in respect of the practicality, dosimetry, and resource aspects. It tries to explore and draw conclusions on the strategies for using this sophisticated and expensive treatment technique from AFOMP perspective.

  • PDF

Proton dosimetry intercomparison based on the ICRU protocol

  • Fukumura, Akifumi;Futami, Yasuyuki;Hiraoka, Takeshi;Omata, Kaname;Takeshita, Mitsue;Kawachi, Kiyomitsu;Kanai, Tatsuaki;Miyahara, Nobuyuki;Vatnitsky, Stanislav;Moyers, Michael;Miller, Daniel;Abell, Greg;Pedroni, Eros;Coray, Adolf;mazal, Alejandro;Newhauser, Wayne;Jaekel, Oliver;Heese, Juergen;Verhey, Lynn;daftari, Inder;Grusell, Erik;Molokanov, Alexander;Bloch, Charles
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.253-254
    • /
    • 1999
  • PDF

A Study on Photon Dosimetry System with Diode Defectors (다이오드를 이용한 광자선 선량측정에 관한 연구)

  • Lee, D.H.;Kang, J.K.;Jang, Y.G.;Jee, Y.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.148-151
    • /
    • 1992
  • There is a definite requirement to continuously monitor the operating characteristics of radiation therapy machines. It is advisable to monitor the symmetry, flatness, and energy stability of x-ray beams. The semiconductor system was developed using commercially available rectifier diode for th assessment of quality assurance In radiation therapy, which is capable of the above measurements. The beam characteristics of 6MV, 10MV and 21MV photon of Microtron electron accelerator were measured using seven-diodes as detectors and the results were compared with that of using a film results dosimetry with a X-Y plotter. The seven-diode detetor is versatile enough to be used for checking beam profile, flatness, symmetry and energy.

  • PDF