Gong, Na-gyeong;Lee, Hyeon-joo;Lee, Chan;Hwang, Jin-seub;Lee, In
The Journal of Internal Korean Medicine
/
v.42
no.4
/
pp.563-571
/
2021
Objectives: This pilot study aimed to confirm the possibility of applying our design to the main study, a retrospective medical record analysis of the diseases which have most frequently been treated with collaborations of Korean and Western medicine, and to identify what corrections and statistical models are needed to conduct the main study. Methods: Data were collected from a case report form developed for patients who received treatment in the medical institutions. Appropriate statistical techniques, like Propensity Score (PS) and Generalized Estimation Equation (GEE) models, were used to compare the indicators of collaboration and non-collaboration groups for patients in comparable diseases. Results: Using PS matching for each M and S disease group, the indicators were compared by balancing the collaboration and non-collaboration group, and the GEE models compared indicators between groups in each disease over follow-up. Through this process we identified two limitations, insufficient samples and a large deviation of the follow-up period. Conclusion: This pilot study confirmed that the study design and case report form are applicable. The main study will be conducted by collecting sufficient samples and reflecting deviation of follow-up period.
The purpose of this study is to examine the differences of profitability based on the analysis of business and medical service performances of four hospitals in Incheon area with similar size. and to compare hospitals with the best and the worst performances and analyze the factors behind the differences. The differences could be caused by differences in medical service statistics, number of staff, and financial results, etc. The data was acquired through the homepage of the National Tax Service(financial statements for the fiscal year 2009) and the Medical Record Association of Incheon(medical service statistics for the years 2008 and 2009) along with questionnaire survey to the hospitals(personnel data for the year 2009). The results of the study are as follows. Medical profits to medical revenues ratio for the hospitals(referred as Hospital A, B, C, and D) shows, in order, C(8.2%), A(8.0%), B(7.8%), and D(7.4%). However, net income to medical revenues ratio shows otherwise: C(8.5%), D(5.8%), A(3.0%), and B(0.6%). Hospital B shows a high medical profit to revenue ratio but the lowest net income to revenue ratio due to large interest expenses. The leverage ratio of Hospital B is the highest (419.6%), resulting in a very low interest coverage ratio(1.1). On the other hand, Hospital C shows favorable results in both profit ratios, with 8.2% and 8.5% each. Hospital C has the lowest leverage ratio(53.0%) and the highest interest coverage ratio(34.9). Therefore, the results show Hospital C has the best performance while Hospital B the worst. The two hospitals(B and C) show similar results in certain areas and big differences in other areas. The area that has the biggest influence on financial results turns out leverage ratio. Hospital B shows 'very good' to 'good' results in terms of medical service statistics in general. However, the leverage ratio is too high and the liquidity ratio too low, resulting in a very low profit ratio. The results of this study have some limitations in terms of generalization as only four hospitals in Incheon area were selected for the study, resulting in a deficiency in the representativeness of the sample. Further studies with bigger sample size and deeper analysis are expected in this area.
Jungwoo Lee;Jungsoo Lee;Ji Hun kwon;Minyi Cha;Kyu Tae Kim
Journal of the Institute of Convergence Signal Processing
/
v.25
no.2
/
pp.100-112
/
2024
This study investigates the ethical and legal implications of utilizing artificial intelligence (AI) in human resource management, with a particular focus on AI interviews in the recruitment process. AI, defined as the capability of computer programs to perform tasks associated with human intelligence such as reasoning, learning, and adapting, is increasingly being integrated into HR practices. The deployment of AI in recruitment, specifically through AI-driven interviews, promises efficiency and objectivity but also raises significant ethical and legal concerns. These concerns include potential biases in AI algorithms, transparency in AI decision-making processes, data privacy issues, and compliance with existing labor laws and regulations. By analyzing case studies and reviewing relevant literature, this paper aims to provide a comprehensive understanding of these challenges and propose recommendations for ensuring ethical and legal compliance in AI-based HR practices. The findings suggest that while AI can enhance recruitment efficiency, it is imperative to establish robust ethical guidelines and legal frameworks to mitigate risks and ensure fair and transparent hiring practices.
Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.
Due to advances in DNA sequencing technologies, its medical value continues to grow. However, once genome data leaked, it cannot be revoked, and disclosure of personal genome information impacts a large group of individuals. Therefore, secure techniques for managing genomic big data should be developed. We first propose a privacy-preserving inner product protocol for large data sets using the homomorphic encryption of Gentry et al., and then we introduce an efficient privacy-preserving DNA matching protocol based on the proposed protocol. Our efficient protocol satisfies the requirements of correctness, confidentiality, and privacy.
Objectives: This study analyzed the prescription characteristics of medication for acute respiratory diseases before and after pay-for-performance to provide basic data on effective medical quality management policies. Methods: The research data were collected from the 2013-2014 sample cohort of the National Health Insurance Corporation, from Internal Medicine, Pediatrics, Otorhinolaryngology, Family Medicine and General practitioner clinics (classification of disease codes: J00-J06, J20-J22, J40 outpatients). Results: The antibiotics prescription rates decreased from 43.9% in 2013 to 43.5% in 2014 when the major diagnosis was for upper respiratory infections and increased from 62.0% in 2013 to 62.5% in 2014 when the major diagnosis was for lower respiratory infections. Conclusions: There is a need to identify the correct antibiotic prescription method by expanding the current assessment standards. Such standards must include acute lower respiratory infections and minor diagnoses as the current evaluation techniques focus only on the major diagnosis of acute upper respiratory infections.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.282-285
/
2018
The purpose of this study is to investigate the effect of personal factors and community factors on the quality of life based on the presence of chronic diseases based on the Big Data Platform. The research methodology was the matching of the 2017 Community Health Survey data and the National Statistical Office data to the health center units. In the study, The higher the age, the higher the education level, the higher the monthly household income, the economic activity, the spouse, the higher the quality of life. In the case of community factors, the lower the population density, the lower the elderly population ratio, the more doctors engaged in medical institutions, the higher the financial independence, the higher the quality of life.
Objectives: The aim of this study was to investigate the effect of breastfeeding on the occurrence of early childhood caries in Korean infants and toddlers. Methods: Data on oral examinations of infants and toddlers of the National Health Insurance Service were analyzed. The study subjects were children who participated in both the first, second, and third oral examinations and the first general health examination in 2008-2017 (n=142,185). Based on the responses to the questionnaire, the subjects were classified into breastfeeding, formula feeding, and mixed feeding groups. The participants were monitored for the development of early childhood caries in three sequential oral examinations. Results: Based on the oral examination results conducted at 54-65 months old, the decayed-filled teeth index of the breastfeeding group was the highest (2.03±3.08), followed by the mixed (1.96±3.03) and the formula feeding groups (1.82±2.91). The Cox proportional hazard regression model including all the variables showed that the risk of developing dental caries was significantly lower in the formula (hazard ratio [HR], 0.85) and mixed feeding groups (HR, 0.91) than in the breastfeeding group. Conclusions: Breastfeeding children have a higher risk of early childhood caries; therefore, oral hygiene education and regular dental check-ups are necessary.
Because there are growing demands for new information service of Korean medicine (KM) accommodated changes in the paradigm of health communication, we aimed to apply health 2.0 - which shares health information to improve individuals' health - extensively in KM. First we studied about the concepts and characteristics of health 2.0 and analyzed the pros and cons of KM information services. Finally we drew the KM health 2.0 framework from the analyzed results. KM health 2.0 framework is designed to raise the value of KM information through circulation of certified medical information to prevent medical accident. And it is also designed to integrate information through big data analysis technology from the information of individual services to recreate KM contents.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.560-563
/
2016
The changes in the medical and healthcare are started from the digital technology. The new field of digital healthcare has started fused with existing healthcare, medical technology, and digital technology. It can increase the service effect and reduce healthcare costs by applying ICT skills such as ICBM(Internet of Things, Cloud, Big data and Mobile), artificial intelligence, robotics, virtual, augmented reality, and wearable devices to healthcare services including healthcare, disease management. Recently there has been grafted an artificial intelligence technologies such as AlphaGo of Google and Watson of IBM onto the healthcare area. In this study, we analyze the main technology, ecosystem, platforms for digital healthcare, and lastly future changes in health care services and issues of digital healthcare.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.