• Title/Summary/Keyword: Medical Image Visualization

Search Result 114, Processing Time 0.023 seconds

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image (복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘)

  • Park, Seong-Me;Lee, You-Jin;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • It is essential for living donor liver transplantation that surgeon must understand the hepatic vessel structure to improve the success rate of operation. In this paper, we extract the liver boundary without other surrounding structures such as heart, stomach, and spleen using the contrast enhanced MDCT liver image sequence. After that, we extract the major hepatic veins (left, middle, right hepatic vein) with morphological filter after review the basic structure of hepatic vessel which reside in segmented liver image region. The purpose of this study is provide the overall status of transplantation operation with size estimation of resection part which is dissected along with the middle hepatic vein. The method of liver extraction is as follows: firstly, we get rid of background and muscle layer with gray level distribution ratio from sampling process. secondly, the coincident images match with unit mesh image are unified with resulted image using the corse coordinate of liver and body. thirdly, we extract the final liver image after expanding and region filling. Using the segmented liver images, we extract the hepatic vessels with morphological filter and reversed the major hepatic vessels only with a results of ascending order of vessel size. The 3D reconstructed views of hepatic vessel are generated after applying the interpolation to provide the smooth view. These 3D view are used to estimate the dissection line after identify the middle hepatic vein. Finally, the volume of resection region is calculated and we can identify the possibility of successful transplantation operation.

TAH(Total Artificial Heart) Fitting Trial Supported by 4D Volume Visualization Technique (4차원 체적 가시화 기법을 이용한 인공심장의 Fitting Trial)

  • Lee, Dong-Hyuk;Kim, Jong-Hyo;Min, Byong-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.161-162
    • /
    • 1997
  • It is very useful to perform the surgery simulation before implanting TAH(Total Artificial Heart} in a patient. The space of chest and the shape of vessels are different from patient to patient. So, It is desirable to customize a TAH design to the anatomy structure of a patient. Several studies are performed to visualize and explain the 3D structure of heart. These studies are performed using 2-dimensional ref or mated images and simple measurement. Anatomy structure of a human heart is not so simple. It is 4dimensional structure ; 3-dimensional plus time, heart beating. 3-dimensional reconstruction schemes of medical images developed for about 10 years are usually categorized into two types of rendering technique ; surface rendering and volume rendering. Volume rendering is preferable in medical image processing field because this technique can be applied without considering the complexity of geometry and change of field of interest. The usable space in the chest of patient can be measured by 3D volume matching of patient trunk and TAH model. This space changes with time. In this research we have developed the 4-dimensional volume match program of patient and TAH model. 3-dimensional rendered set of volumes along time were used to simulate TAH fitting trial. The quantitative measurement from this simulation could be applied to customize TAH design.

  • PDF

Development of Interactive Three-dimensional Medical Image Visualization Platform (대화형 의료 영상 3차원 가시화 플랫폼 개발)

  • Choi, Nakyeon;Lee, Sanghoon;Kim, Taewan;Lee, Hojae;Kim, Seonghyun;Lee, Sanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.167-170
    • /
    • 2013
  • 의료 영상의 3차원 가시화는 최근에 교육 진단 수술 리허설 등의 목적으로 많은 관심을 받고 있다. 하지만 관심영역을 3차원으로 가시화 하는 작업은 복잡하고 시간이 많이 소요되는 과정이기 때문에, 대부분 ITK, VTK 같이 가시화 알고리즘이 구현된 오픈소스 라이브러리들이 사용되고 있다. 또한 인터페이스의 구현을 위해 Win32 API, MFC, Java SWT와 같은 플랫폼 또는 라이브러리들이 사용되고 있는 상황인데, 이러한 경향으로 인해 실제로 일련의 알고리즘을 모두 이해하고 직접 구현하는 경우는 거의 찾아보기 힘들다. 이에 본 논문은 의료 영상의 3차원 가시화를 위해 필요한 여러 기술들에 대해 설명하고, 이를 사용자와 상호작용 하는 인터페이스를 구현한 대화형 3차원 의료 가시화 소프트웨어를 구현하였다.

  • PDF

Surgical Simulation Environment for Replacement of Artificial Knee Joint (CT 영상을 이용한 무릎관절 모의 치환 시술 환경)

  • Kim, Dong-Min
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.119-126
    • /
    • 2003
  • This paper presents a methodology for constructing a surgical simulation environment for the replacement of artificial knee join using CT image data. We provide a user interface of preoperative planning system for performing complex 3-D spatial manipulation and reasoning tasks. Simple manipulation of joystick and mouse has been proved to be both intuitive and accurate for the fitness and the wear expect of joint. The proposed methodology are useful for future virtual medical system where all the components of visualization, automated model generation, and surgical simulation are integrated.

  • PDF

Segmentation and Visualization of Left Ventricle in MR Cardiac Images (자기공명심장영상의 좌심실 분할과 가시화)

  • 정성택;신일홍;권민정;박현욱
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • This paper presents a segmentation algorithm to extract endocardial contour and epicardial contour of left ventricle in MR Cardiac images. The algorithm is based on a generalized gradient vector flow(GGVF) snake and a prediction of initial contour(PIC). Especially. the proposed algorithm uses physical characteristics of endocardial and epicardial contours, cross profile correlation matching(CPCM), and a mixed interpolation model. In the experiment, the proposed method is applied to short axis MR cardiac image set, which are obtained by Siemens, Medinus, and GE MRI Systems. The experimental results show that the proposed algorithm can extract acceptable epicardial and endocardial walls. We calculate quantitative parameters from the segmented results, which are displayed graphically. The segmented left vents role is visualized volumetrically by surface rendering. The proposed algorithm is implemented on Windows environment using Visual C ++.

3-D CT Imaging of Pathological Bone Changes in a Rat Model of Adjuvant-Induced Arthritis

  • Shim, Kyung-Mi;Kim, Se-Eun;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.41-46
    • /
    • 2008
  • Computed tomography (CT) is a medical imaging method employing tomography. CT is a 3-Dimensional (3-D) radiographic imaging technique, which is not suited for assessment of inflammation, but can be considered a reference method for assessment of bone damage, due to its direct 3-D visualization of calcified tissue. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AIA) and quality analysis of bone destructions were performed by 3-Dimensional computed tomography images. These data demonstrate that the destructive progression of disease in a rat AIA model can be quantified using 3-D CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  • PDF

PIV measurement of oscillatory flow in a micro-channel as a bronchiole model

  • LEE Won-je;KAWAHASHI Massaki;HIRAHARA Hiroyuki
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.125-134
    • /
    • 2004
  • The improvement of artificial respiration method has brought about the decrease in mortality of pulmonary diseases patients. Various respiratory curative methods, inclusive of HFOV (High Frequency Oscillatory Ventilation), have been developed for more effectual and less harmful management of acute respiratory failure. However, the mechanism of gas transfer and diffusion in a bronchiole has not yet been clarified in detail. As a first approach to the problem, we measured oscillatory flows in a Y-shaped micro-channels as bronchiole model by micro Particle Image Velocimetry(micro PIV). In order to establish the fundamental technique of PIV measurements on oscillatory air flow in a micro-channel, we used about 500-nm-diameter incense smoke particles, a diode laser, a high speed camera including an objective lens, and a HFOV, which is effective technique for medical care of pulmonary disease patients, especially, infants. The bronchiole model size is that parent tube is $500\{mu}m$ width and $500\{mu}m$ depth, and daughter tubes are $450\{mu}m$ width and $500\{mu}m$ depth. From this study made on the phenomenon of fluid in micro size bronchus branch of a lung, we succeeded to get time series velocity distribution in a micro scale bronchial mode. The experimental results of velocity distribution changing with time obtained by micro PIV can give fundamental knowledge on oscillatory airflow in micro-channel.

  • PDF

A Voxelization for Geometrically Defined Objects Using Cutting Surfaces of Cubes (큐브의 단면을 이용한 기하학적인 물체의 복셀화)

  • Gwun, Ou-Bong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.157-164
    • /
    • 2003
  • Volume graphics have received a lot of attention as a medical image analysis tool nowadays. In the visualization based on volume graphics, there is a process called voxelization which transforms the geometrically defined objects into the volumetric objects. It enables us to volume render the geometrically defined data with sampling data. This paper suggests a voxeliration method using the cutting surfaces of cubes, implements the method on a PC, and evaluates it with simple geometric modeling data to explore propriety of the method. This method features the ability of calculating the exact normal vector from a voxel, having no hole among voxels, having multi-resolution representation.

Segmentation of Arterial Vascular Anatomy around the Stomach based on the Region Growing Based Method

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 2014
  • Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.

Recent Advances in Examination of Vocal Fold Vibration (성대진동검사의 최신 지견)

  • Lee, Jin-Choon;Bae, Inho
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Human vocal cords vibrate as quickly as 100-250 times per second, so it is impossible to observe them with normal endoscopic diagnostic equipment. High-speed videolaryngoscopy (HSV) allows the visualization of non-periodic vibratory motion of vocal fold beyond the limitation of videostroboscopy. New developed post-processing methods that converts HSV to two-dimensional videokymography (2D VKG) using U-medical image-processing software can provide quantitative information on vocal fold mucosa vibration. Multifunctional laryngeal examination system is composed of 3 kinds of examinations such as HSV, 2D scanning digital kymography (2D DKG) and line scanning digital kymography (DKG). Evaluation of entire vocal cord vibratory pattern in each cord is possible using 2D DKG and a faster and more reliable quantitative information can be obtained. As this system is used in clinical and research, it is expected to bring much advances to the diagnosis of voice disorders. In this review, I will introduce the principles and advantages on examination of the vocal fold vibration, which is in the spotlight recently, and proceed with the literature review.