• Title/Summary/Keyword: Medical Image Storage System

Search Result 35, Processing Time 0.02 seconds

Developing Standard Transmission System for Radiology Reporting Including Key Images (Key Image를 포함한 방사선과 판독결과지 표준전송시스템 개발)

  • Kim, Seon-Chil
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.47-51
    • /
    • 2007
  • Development of hospital information system and Picture Archiving Communication System is not new in the medical field, and the development of internet and information technology are also universal. In the course of such development, however, it is hard to share medical information without a refined standard format. Especially in the department of radiology, the role of PACS has become very important in interchanging information with other disparate hospital information systems. A specific system needs to be developed that radiological reports are archived into a database efficiently. This includes sharing of medical images. A model is suggested in this study in which an internal system is developed where radiologists store necessary images and transmit them in the standard international clinical format, Clinical Document Architecture, and share the information with hospitals. CDA document generator was made to generate a new file format and separate the existing storage system from the new system. This was to ensure the access to required data in XML documents. The model presented in this study added a process where crucial images in reading are inserted in the CDA radiological report generator. Therefore, this study suggests a storage and transmission model for CDA documents, which is different from the existing DICOM SR. Radiological reports could be better shared, when the application function for inserting images and the analysis of standard clinical terms are completed.

  • PDF

Development of Automatic Medical Questionnaire Recognition (의료용 설문지 자동인식 시스템 개발)

  • Kwon, Kyung Su;Kim, Hang-Joon;Park, Se-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.35-41
    • /
    • 2017
  • In This Paper, We Propose the Development of a Medical Questionnaire Recognition System using Vision Technology. The Proposed System is Able to Accurately Recognize and Effectively Process a Large Number of Questionnaires used in Community Health Surveys in the Medical and Health Fields. The System Consists of Questionnaire Scanning, Answer Recognition and Error Data Processing, Result Data Verification, Image Storage and DB Construction, and Analysis of Questionnaire Results. Unlike Existing Systems, This System is Free from the Form of Questionnaires used, and Enables Accurate Recognition by Processing Various Markings and Erroneous Markings. Experimental Results Show that the Proposed System has 98.9% Recognition rate.

Study For Watermarking Technique In Medical Image (의료영상에서의 워터마킹 기법에 관한 연구)

  • 남기철;박무훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.348-351
    • /
    • 2002
  • Recently, the medical imaging field has been digitalized by the development of computer science and digitization of the medical devices. There are needs of the medical imaging database service and long term storage today because of the installation of PACS system following DICOM standards, telemedicine and etc. and ,also, the illegal distortion of the medical information, data authentication and copyright are being happened. In this paper, we propose watermarking technique as a method which can protect private informations and medical imaging from geometric distortion. Because many watermarks for images are sensitive to geometric distortion, we present a algorithm that is insensitive to RST distortion in medical image. we observed the robustness against several of the signal processing and attacks in medical imaging field by embedding watermark after making a region which is insensitive to RST distortion by using FFT and LPM transformation.

  • PDF

Dental PACS development in Korea

  • Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.38 no.4
    • /
    • pp.189-194
    • /
    • 2008
  • Picture archiving and communication system (PACS) is an image information technology system for the transmission and storage of medical images. In Korea the first full PACS was installed at Samsung Medical Center in 1994, but, the rate of distribution was very slow. The government's approval for the medical insurance reimbursement for full PACS examinations in November 1999 became the turning point. Thereafter the number of hospitals with full PACS has steeply increased. In September of this year, PACS was installed at 906 medical institutes, including most of university hospitals and general hospitals. The first full dental PACS was installed at Wonkwang University Dental Hospital in 2002. Now ten out of eleven university dental hospitals implemented full dental PACS. The current status and technological factors of dental PACS in Korean university dental hospitals and the future perspectives of dental PACS are described. (Korean J Oral Maxillofac Radiol 2008; 38: 189-94)

  • PDF

Development of Peripheral Devices on the Endoscopic Surgery System (내시경 수술시스템의 주변장치 개발)

  • Lee, Young-Mook;Song, Chul-Gyu;Lee, Sang-Min;Kim, Won-Ky
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.164-166
    • /
    • 1995
  • The objectives of study are to develop a peripheral device on the endoscopic surgery system. These systems are consist of the following units. They are a color monitor of high resolution, light source, computer system and endoscopic camera with a C-mount head, irrigator, color video printer, Super VHS recorder and a system rack. The color monitor is a NTSC monitor for monitoring the image projected of the surgical section. The lightsource is necessary to irradiate the interior of a body via an optic fiber, The light projector will adapt the brightness in accordance with changing distance from the object. A miniature camera using a color CCD chip and computer system is used to capture and control an image of the surgical section[1]. The video printer is a 300 DPI resolution using thermal sublimation methods, which is developed by Samsung Electronics Co., Ltd. The specification of the endoscopic data management system is consist of storage of a captured image and pathological database of patients [2-4].

  • PDF

PSNR Evaluation of P Company DSA System between Server Display Monitor and Client Display Monitor (P사 DSA 시스템의 Server Display Monitor와 Client Display Monitor의 PSNR 평가)

  • Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • PACS is needed medical imaging with large-capacity storage device. Slower transmission degrades the performance of the PACS. Thus, the image read by the reading of the long-term stored image without compromising the quality of the video, which does not affect future readings in the range will be compressed and stored. Compression and video storage, and video transport Noise generated during storage and transmission of medical images and the resulting loss of information that occurs when the monitor output from many problems. The study estimates server display monitor and client display monitor of philips DSA system, and suggests that the evaluation and improvement about PSNR, process from server display signal obtaining to client display monitor. P company DSA is used in the test. Two monitors that are $1280{\times}1024$ pixel monitor of P company and 1536x2048 pixel monitor of Wide are used displaying angiography picture. MARO-view is taken in PACS program, and Visual $C^{++}$ is taken as accomplishing PSNR measurement program. As a result of experiment, no change in No 1, 3 of PSNR appear that there is no error in telephotograph and display. In terms of compressibility, low compressibility has small change of definition, and there was not remarkable drawback of compressibility which has little change in definition.

The Design of Mobile Medical Image Communication System based on CDMA 1X-EVDO for Emergency Care (CDMA2000 1X-EVDO망을 이용한 이동형 응급 의료영상 전송시스템의 설계)

  • Kang, Won-Suk;Yong, Kun-Ho;Jang, Bong-Mun;Namkoong, Wook;Jung, Hai-Jo;Yoo, Sun-Kook;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.53-55
    • /
    • 2004
  • In emergency cases, such as the severe trauma involving the fracture of skull, spine, or cervical bone, from auto accident or a fall, and/or pneumothorax which can not be diagnosed exactly by the eye examination, it is necessary the radiological examination during transferring to the hospital for emergency care. The aim of this study was to design and evaluate the prototype of mobile medical image communication system based on CDMA 1X EVDO. The system consists of a laptop computer used as a transmit DICOM client, linked with cellular phone which support to the CDMA 1X EVDO communication service, and a receiving DICOM server installed in the hospital. The DR images were stored with DICOM format in the storage of transmit client. Those images were compressed into JPEG2000 format and transmitted from transmit client to the receiving server. All of those images were progressively transmitted to the receiving server and displayed on the server monitor. To evaluate the image quality, PSNR of compressed image was measured. Also, several field tests had been performed using commercial CDMA2000 1X-EVDO reverse link with the TCP/IP data segments. The test had been taken under several velocity of vehicle in seoul areas.

  • PDF

Methods of DICOM and Non-DICOM Interfacing for various Radiological Equipments with PACS (방사선 검사 관련 의료장비와 PACS 간의 연동을 위한 DICOM 및 Non-DICOM 인터페이스 방안)

  • Kim, H.C.
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.6 no.1
    • /
    • pp.51-64
    • /
    • 2003
  • This thesis describes the effective interfacing methods of PACS Modality based on the system installation andoperating experiences. PACS(Picture Archiving and Communication Systems) is a system for medical image archiving and communication using large storage device and high-speed network. The standard communication protocol of PACS is DICOM(Digital Imaging and Communication in Medicine) based on TCP/IP and point-to-point protocol. However, there are many Non-DICOM Modalities and DICOM Modalities having problems. First, we had interfaced almost modalities. Fuji CR, GE CT, MRI, Angio, Fluoro, Phillips Angio, Shimadzu Fluoro. Ultrasound PACS, with the main PACS in the Seoul S Hospital as large scale hospital. And we manipulated the intelligent image distribution and the CT. MRI Interfaces never experienced beforein the Anyang J Hospital and the Chungju C Hospital as mid or small scale hospital. Technically, we developed both the DICOM Interface and the Non-DICOM Interface. At the last, the DICOM Worklist and the DICOM Print Interface were implemented in the Seoul B Hospital, the Bucheon SJ Hospital and the Seoul K Hospital independently with PACS. The Oracle, Sybase and MS-SQL are used as database, and UNIX, Macintosh, MS Windows as operating systems. And the Visual C++ and UNIX C are the main programming tools. We have used UTP, coaxial and fiber optic cable under 10/100 mbps LAN for networking.

  • PDF

Methods of DICOM and Non-DICOM Interfacing for various Radiological Equipments with PACS (방사선 검사 관련 의료장비와 PACS 간의 연동을 위한 DICOM 및 Non-DICOM 인터페이스 방안)

  • Kim, Hyeon-Cheol
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.46-63
    • /
    • 2002
  • This thesis describes the effective interfacing methods of PACS Modality based on the system installation and operating experiences. PACS(Picture Archiving and Communication Systems) is a system for medical image archiving and communication using large storage device and high-speed network. The standard communication protocol of PACS is DICOM(Digital Imaging and Communication in Medicine) based on TCP/IP and point-to-point protocol. However, there are many Non-DICOM Modalities and DICOM Modalities having problems. First, we had interfaced almost modalities, Fuji CR, GE CT, MRI, Angio, Fluoro, Phillips Angio, Shimadzu Fluoro, Ultrasound PACS, with the main PACS in the Seoul S Hospital as large scale hospital. And we manipulated the intelligent image distribution and the CT, MRI Interfaces never experienced before in the Anyang J Hospital and the Chungju C Hospital as mid or small scale hospital. Technically, we developed both the DICOM Interface and the Non-DICOM Interface. At the last, the DICOM Worklist and the DICOM Print Interface were implemented in the Seoul B Hospital, the Bucheon SJ Hospital and the Seoul K Hospital independently with PACS. The Oracle, Sybase and MS-SQL are used as database, and UNIX, Macintosh, MS Windows as operating systems. And the Visual C++ and UNIX C are the main programming tools. We have used UTP, coaxial and fiber optic Gable under 10/100 mbps LAN for networking.

  • PDF

Post-Processing of High-Speed Video-Laryngoscopic Images to Two-Dimensional Scanning Digital Kymographic Images (초고속 후두내시경 영상을 이용한 평면 스캔 비디오카이모그래피 영상 생성)

  • Cha, Wonjae;Wang, Soo-Geun;Jang, Jeon Yeob;Kim, Geun-Hyo;Lee, Yeon-Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Background and Objectives : High-speed videolaryngoscopy (HSV) is the only technique that captures the true intra-cycle vibratory behavior of the vocal folds by capturing full images of the vocal folds. However, it has problems of no immediate feedback during examination, considerable waiting time for digital kymography (DKG), recording duration limited to a few seconds, and extreme demands for storage space. Herein, we demonstrate a new post-processing method that converts HSV images to two-dimensional digital kymography (2D-DKG) images, which adopts the algorithm of 2D videokymography (2D VKG). Materials and Methods : HSV system was used to capture images of vocal folds. HSV images were post-processed in Kay image-process software (KIPS), and conventional DKG images were retrieved. Custom-made post-processing system was used to convert HSV images to 2D-DKG images. The quantitative parameters of the post-processed 2D-DKG images was validated by comparing these parameters with those of the DKG images. Results : Serial HSV images for all phases of vocal fold vibratory movement are included. The images were converted by the scanning method using U-medical image-process software. Similar to conventional DKG, post-processed 2D DKG image from the HSV image can provide quantitative information on vocal fold mucosa vibration, including the various vibratory phases. Differences in amplitude symmetry index, phase symmetry index, open quotient, and close quotient between 2D-DKG and DKG were analyzed. There were no statistical differences between the quantitative parameters of vocal fold vibratory movement in 2D-DKG and DKG. Conclusion : The post-processing method of converting HSV images to 2D DKG images could provide clinical information and storage economy.

  • PDF