This study aims to analyze the characteristics of the management situation of the Korea Railroad Corporation(KORAIL) through the management innovation process of the KORAIL and to suggest its implications for military application. Despite stable demand, the railway passenger industry had the limitation of not being able to abolish deficit routes due to public service obligations. In addition, the launch of the Suseo High-Speed Line has introduced a competitive system, posing a threat to corporate management. KORAIL wanted to overcome this crisis by innovating its management through the utilization of big data, improvement of the freight business, decentralization of demand, the introduction of tourism railroads, and development of station influence areas. By utilizing big data, KORAIL was able to optimize the railway fare system while reducing fixed costs spent on railway maintenance. It also drastically reduced the station of cargo and created a base station to pursue economies of scale. On the other hand, the existing exclusive station system was abolished to solve the chronic saturation of the downtown area, and the railway demand was moved to Gwangmyeong Station and Suwon Station to optimize the passenger supply. In particular, it developed a new business model called the tourism railway by developing the mountain Byeokjin Line, which was a chronic deficit line, and sought to improve liquidity through the development of the station influence area. Such a process of innovation at KORAIL suggests an appropriate direction in seeking ways to innovate the military medical institutions. First of all, the necessity of improving organizational immersion through the development of a personnel structure suitable for the compulsory organization, while expanding the facilities of the division and corps, and reducing the time required for medical treatment and waiting through the establishment of a data-based medical system was suggested. Next, it was also discussed to integrate the National Health Medical College, which received accreditation as a medical facility through the designation of advanced general hospitals and is ultimately under discussion with the Medical Institution. Through this, we hope that the military medical institutions, which are facing various challenges, will overcome existing limitations and be re-lighted as innovative institution that provides comprehensive public health services.
현재 우리나라 중소기업은 혁신역량이 부족한 영세기업의 비중이 높고, 매출 규모가 건실한 기업군이 취약한 구조로 발전을 기대하기 어려운 상황이다. 따라서 정부 3.0을 기반으로 한 중소기업의 빅 데이터 활용방안을 제시한다. 정부 3.0을 기반으로 중소기업의 활성화를 위한 정부지원 빅 데이터 활용 방안을 제시한다. 정부3.0을 기반으로 빅 데이터 인프라를 중소기업과 중소 벤처들이 자유롭게 이용할 수 있는 개방형 빅 데이터 서비스 플랫폼의 구축이 반드시 필요하다.
최근에 의료, 군사, 스포츠 등의 다양한 분야에서 사물인터넷(IoT)와 빅데이터가 활용되고 있다. 나사렛대학교는 여러 형태의 장애 등급과 장애 유형을 가지고 있는 약 300여명의 장애학생이 있는 재활복지 중심대학이다. 본 논문은 캠퍼스 내에서 장애 학생들이 실내와 실외를 이동할 시에 BLE비콘과 3축 가속도 센서를 이용하여 이동경로 산정과 위험상황 회피를 위한 최적의 경로를 제공하는 스마트 캠퍼스를 제안한다. 이를 위하여 센서기반 IoT 기술을 이용한 장애학생 보행 데이터를 빅데이터로 관리한다.
기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.
Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).
South Korea has the most advanced technology in the Fourth Industrial Revolution era because of its high-speed Internet commercialization. However, the industry is shrinking due to its various regulations in building and its utilization of personal information as big data. Currently, South Korea's personal data utilization business is in its early stages. In the era of the 4th Industrial Revolution, it is difficult for startups to use data. There are various causes here. Above all, legal regulations to protect personal information are emphasized. This study confirms that transactions of personal medical records through My Data can be made. Moreover, it confirms that there is a need for a mediating role between stakeholders. This study lacks statistical access in the process of performing stakeholder roles. However, personal medical records will be traded safely in the future, and new subjects will enter the market. Furthermore, the domestic bio-industry will develop. Through this study, various problems were derived in establishing Medical MyData in Korea. Moreover, it looks forward to continuing various studies in the health care sector in the future.
최근 빅데이터 관련 기술들이 발전함에 따라 다양한 분야에서 생성되는 데이터들을 수집하여 저장하고 처리 및 분석할 수 있게 되었다. 이러한 빅데이터 기술들을 임상 결과 분석에 활용하고, 임상시험 설계 최적화를 통해 보건의료분야에 투입되는 막대한 비용을 절감할 수 있을 것으로 전망된다. 따라서 본 논문에서는 임상 결과를 분석하여 임상시험 기간과 비용 등을 줄일 수 있는 가이드 정보를 제시하고자 한다. 먼저 Sqoop을 사용하여 임상 결과 데이터가 저장된 관계형 데이터 베이스로부터 HDFS에 수집하여 저장하고, 하둡을 기반으로 동작하는 처리 도구인 Hive를 이용하여 데이터를 처리한다. 공공분야, 기업 등 각 분야에서 많이 활용되고 있는 빅데이터 분석 도구인 R을 이용하여 연관성 분석을 한다.
Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
한국인공지능학회지
/
제12권1호
/
pp.25-29
/
2024
In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.
Background : To shorten processing time for variety of medical affairs of the patient at the outpatient clinic of a big hospital is very important to qualify medical care of the patient. Therefore, patient's waiting time for medical examination is often utilized as a strong tool to evaluate patient satisfaction with a medical care provided. We performed this study to investigate factors delaying related with waiting time for medical examination. Methods : The data were collected from June 26 to July 30, 1999. A total 275 case of medical treatment and 5,634 patients who visited outpatient clinics of a tertiary hospital were subjected to evaluate the waiting time. The data were analyzed using frequency, t-test, ANOVA, $X^2$-test by SPSS Windows 7.5 program. Results : The mean patient's waiting time objectively evaluated ($30.9{\pm}33.9$ min) was longer than that subjectively by patient evaluated ($25.1{\pm}26.2$ min). Patient waiting time objectively evaluated was influenced by the starting time of medical examination, consultation hours, patients arriving time etc, as expected. The time discrepancy between two evaluations was influenced by several causative factors. Regarding the degree of patients accepted waiting time with the medical examination is 20 min. Conclusion : The results show that, besides the starting time of medical examination, consultation hours and patients arriving time, influence the patient's subjective evaluation of waiting time for medical examination and his satisfaction related with the service in the big hospital. In order to improve patient satisfaction related with waiting time for medical examination, it will be effective examination rather than to shorten the real processing time within the consultation room.
정보통신기술의 발전과 함께 데이터의 생산량이 기하급수적으로 증가하면서 빅데이터에 대한 관심이 높아지고 있다. 빅데이터 관련 기술들도 발전함에 따라 여러 분야에서 빅데이터가 수집, 저장, 처리, 분석, 활용되고 있다. 특히 보건의료 분야에서의 빅데이터 분석은 사회경제적으로도 큰 영향력을 발휘할 수 있기 때문에 큰 주목을 받고 있다. 빅데이터 기술을 환자 진단 데이터 분석에 활용하여 간단한 병원 진료에 투여되는 막대한 비용을 절감할 수 있을 것으로 전망된다. 따라서 본 논문에서는 환자 데이터를 분석하여 병원에 가기 어려운 환자나 의학적인 전문 지식이 없는 간병인들에게 의사의 진단과 가까운 간병 가이드 정보를 제시하고자 한다. 먼저 수집된 환자 데이터를 HDFS에 저장하고, 하둡 환경에서 빅데이터 처리 및 분석 도구인 R을 이용하여 데이터를 처리한 후 분류분석을 한다. R의 다양한 기능들을 웹에 구현하기 위해 활용되는 R Shiny를 이용하여 웹 서버에 시각화를 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.