Hwang, Young-Jae;Kim, Nayoung;Yun, Chang Yong;Yoon, Hyuk;Shin, Cheol Min;Park, Young Soo;Son, Il Tae;Oh, Heung-Kwon;Kim, Duck-Woo;Kang, Sung-Bum;Lee, Hye Seung;Park, Seon Mee;Lee, Dong Ho
Journal of Cancer Prevention
/
v.23
no.4
/
pp.183-190
/
2018
Background: As the number of big-cohort studies increases, validation becomes increasingly more important. We aimed to validate administrative database categorized as colorectal cancer (CRC) by the International Classification of Disease (ICD) 10th code. Methods: Big-cohort was collected from Clinical Data Warehouse using ICD 10th codes from May 1, 2003 to November 30, 2016 at Seoul National University Bundang Hospital. The patients in the study group had been diagnosed with cancer and were recorded in the ICD 10th code of CRC by the National Health Insurance Service. Subjects with codes of inflammatory bowel disease or tuberculosis colitis were selected for the control group. For the accuracy of registered CRC codes (C18-21), the chart, imaging results, and pathologic findings were examined by two reviewers. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for CRC were calculated. Results: A total of 6,780 subjects with CRC and 1,899 control subjects were enrolled. Of these patients, 22 subjects did not have evidence of CRC by colonoscopy, computed tomography, magnetic resonance imaging, or positron emission tomography. The sensitivity and specificity of hospitalization data for identifying CRC were 100.00% and 98.86%, respectively. PPV and NPV were 99.68% and 100.00%, respectively. Conclusions: The big-cohort database using the ICD 10th code for CRC appears to be accurate.
While healthcare data sets include extensive information about patients, many researchers have limitations in analyzing them due to their intrinsic characteristics such as heterogeneity, longitudinal irregularity, and noise. In particular, since the majority of medical history information is recorded in text codes, the use of such information has been limited due to the high dimensionality of explanatory variables. To address this problem, recent studies applied word embedding techniques, originally developed for natural language processing, and derived positive results in terms of dimensional reduction and accuracy of the prediction model. This paper reviews the deep learning-based natural language processing techniques (word embedding) and summarizes research cases that have used those techniques in the health care field. Then we finally propose a research framework for applying deep learning-based natural language process in the analysis of domestic health insurance data.
Kang, Yooseong;Park, Jong Hoon;Oh, Hayoung;Lee, Se Uk
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.11
/
pp.1571-1576
/
2022
This study aims to analyze the interest of modern people in non-face-to-face medical counseling in the medical industrys. Big data was collected on two social platforms, 지식인, a platform that allows experts to receive medical counseling, and YouTube. In addition to the top five keywords of telephone counseling, "internal medicine", "general medicine", "department of neurology", "department of mental health", and "pediatrics", a data set was built from each platform with a total of eight search terms: "specialist", "medical counseling", and "health information". Afterwards, pre-processing processes such as morpheme classification, disease extraction, and normalization were performed based on the crawled data. Data was visualized with word clouds, broken line graphs, quarterly graphs, and bar graphs by disease frequency based on word frequency. An emotional classification model was constructed only for YouTube data, and the performance of GRU and BERT-based models was compared.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.8
/
pp.1460-1465
/
2016
Lots of costs threaten the sustainability of the national health-guarantee system. Despite research by the national center for disease control and prevention on health care dynamics with its auditing systems, there are still restrictions of time limitation, sample limitation, and, target diseases limitation. Against this backdrop, using huge volume of total data, many technologies could be fully adopted to the preliminary forecasting and its target-disease expanding of health. With structured data from the national health insurance and unstructured data from the social network service, we attempted to design a model to predict disease. The model can enhance national health and maximize social benefit by providing a health warning service. Also, the model can reduce the advent increase of national health cost and predict timely disease occurrence based on Big Data analysis. We researched related medical prediction cases and performed an experiment with a pilot project so as to verify the proposed model.
International journal of advanced smart convergence
/
v.8
no.3
/
pp.87-94
/
2019
IoT-based services are being released in accordance with the aging population and the demand for well-being pursuit needs. In addition to medical device companies, companies with ideas ranging from global ICT companies to startup companies are accelerating their market entry. The areas where these services are most commonly applied are health/medical, life/safety, city/energy, automotive and transportation. Furthermore, by expanding IoT technology convergence into the area of life care services, it contributes greatly to the development of service models in the public sector. It also provides an important opportunity for IoT-related companies to open up new markets. By addressing the problems of life care services that are still insufficient. We are providing opportunities to pursue the common interests of both users and workers and improve the quality of life. In order to establish IoT-based digital life care services, it is necessary to develop convergence technologies using cloud computing systems, big data analytics, medical information, and smart healthcare infrastructure.
Kim, Sung Hyeock;Oh, Sang Jin;Yoon, Geun Young;Kim, Wan
Korean Journal of Artificial Intelligence
/
v.5
no.1
/
pp.29-37
/
2017
The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the Gradient Descent Optimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.
Hwang, In Cheol;Park, Kwi Hwa;Yim, Jun;Kim, Jin Joo;Ko, Kwang Pil;Bae, Seung Min;Kyung, Sun Young
The Journal of the Korea Contents Association
/
v.16
no.4
/
pp.231-240
/
2016
The purpose of this study is to investigate the relationship among fatigue, personality, learning strategies, and academic achievement of medical students. 146 students from year 1 to year 4 at one medical school participated in this study. Students completed the fatigue, Big Five personality traits(Neuroticism, Extraversion, Openness, Agreeableness, Conscientiousness), learning, strategies. The academic achievement of students measured by GPA. The data were analyzed by t-test and stepwise multiple regression. The student's fatigue differed by grade, and the students of low grade had higher scores than high grade. But personality traits and learning strategies were not significantly different by grade. The factors that affect on academic achievement differ by grade. In low grade, neuroticism, extraversion, and rehearsal affected students' academic achievement. In high grade, conscientiousness and extraversion had an effect on the academic achievement of students. These results could guide the design of medical education improvement, and be useful in developing a supporting program for medical students.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.203-208
/
2022
The occurrence of Type 2 Diabetes Mellitus (T2DM) is hoarding globally. All kinds of Diabetes Mellitus is controlled to disrupt over 415 million grownups worldwide. It was the seventh prime cause of demise widespread with a measured 1.6 million deaths right prompted by diabetes during 2016. Over 90% of diabetes cases are T2DM, with the utmost persons having at smallest one other chronic condition in UK. In valuation of contemporary applications of Big Data (BD) to Diabetes Medicare by sighted its upcoming abilities, it is compulsory to transmit out a bottomless revision over foremost theoretical literatures. The long-term growth in medicine and, in explicit, in the field of "Diabetology", is powerfully encroached to a sequence of differences and inventions. The medical and healthcare data from varied bases like analysis and treatment tactics which assistances healthcare workers to guess the actual perceptions about the development of Diabetes Medicare measures accessible by them. Apache Spark extracts "Resilient Distributed Dataset (RDD)", a vital data structure distributed finished a cluster on machines. Machine Learning (ML) deals a note-worthy method for building elegant and automatic algorithms. ML library involving of communal ML algorithms like Support Vector Classification and Random Forest are investigated in this projected work by using Jupiter Notebook - Python code, where significant quantity of result (Accuracy) is carried out by the models.
As we enter the era of the 4th industrial revolution, it is judged that the scope of work of radiologists will be further expanded according to the innovation and advancement of radiation medical technology development. In this study, the current status of medical equipment and radiology technicians was identified, and basic data were provided for the plan for nurturing talents in the field of radiation medical technology in the era of the 4th industrial revolution, as well as career and employment counseling. Data from the second quarter of 2020 and the second quarter of 2021 were analyzed using health and medical big data. As a result of comparing the status of medical equipment by type in 2021 compared to 2020, C-Arm X-ray examination equipment increased by 5.83% to 6,638 units, followed by MRI examination equipment 1,811 units 5.29%, and angiography equipment 725 units 5.22% , general X-ray examination equipment 21,557 units increased 3.99%, CT examination equipment 2,136 units 3.03%, and breast examination equipment 3,425 units increased 3.00%. As a result of a comparison of the total number of radiologists in 2021 compared to 2020, the number was 29,038, an increase of 2.73%. As a result of comparing the status of radiographers by region, the increase was highest in the Gyeonggi region with 5.96%, followed by the Gangwon region with a 5.66% increase and the Chungnam region with a 3.81% increase. In a situation where the number of medical equipment and radiologist manpower is increasing, universities are developing specialized knowledge and practical competency through subject development related to the understanding and utilization of customized artificial intelligence and big data that can be applied in the medical radiation technology field in the era of the 4th industrial revolution. It is necessary to nurture qualified radiographers, and at the level of the association, it is thought that active policies are needed to create new jobs and improve employment.
Background: Trigeminal neuralgia (TN) is one of the most painful disorder in the orofacial region, and many patients have suffered from this disease. For the effective management of TN, fundamental epidemiologic data related to the target population group are essential. Thus, this study was performed to clarify the epidemiological characteristics of TN in the Korean population. This is the first national study to investigate the prevalence of TN in Korean patients. Methods: From 2014 to 2018, population-based medical data for 51,276,314 subscribers to the National Health Insurance Service of Korea were used for this study. Results: The incidence of TN was 100.21 per 100,000 person-years in the year of 2018 in Korea, and the male to female ratio was 1:2.14. The age group of 51-59 years had the highest prevalence of TN. Constant increases in medical cost, regional imbalance, and differences in prescription patterns by the medical specialties were showed in the management of TN. Conclusions: The results in this study will not only help to study the characteristics of TN, but also serve as an important basis for the effective management of TN in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.