• Title/Summary/Keyword: Media big data

Search Result 531, Processing Time 0.038 seconds

Design and Implementation of Incremental Learning Technology for Big Data Mining

  • Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2019
  • We usually suffer from difficulties in treating or managing Big Data generated from various digital media and/or sensors using traditional mining techniques. Additionally, there are many problems relative to the lack of memory and the burden of the learning curve, etc. in an increasing capacity of large volumes of text when new data are continuously accumulated because we ineffectively analyze total data including data previously analyzed and collected. In this paper, we propose a general-purpose classifier and its structure to solve these problems. We depart from the current feature-reduction methods and introduce a new scheme that only adopts changed elements when new features are partially accumulated in this free-style learning environment. The incremental learning module built from a gradually progressive formation learns only changed parts of data without any re-processing of current accumulations while traditional methods re-learn total data for every adding or changing of data. Additionally, users can freely merge new data with previous data throughout the resource management procedure whenever re-learning is needed. At the end of this paper, we confirm a good performance of this method in data processing based on the Big Data environment throughout an analysis because of its learning efficiency. Also, comparing this algorithm with those of NB and SVM, we can achieve an accuracy of approximately 95% in all three models. We expect that our method will be a viable substitute for high performance and accuracy relative to large computing systems for Big Data analysis using a PC cluster environment.

Insights Discovery through Hidden Sentiment in Big Data: Evidence from Saudi Arabia's Financial Sector

  • PARK, Young-Eun;JAVED, Yasir
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.6
    • /
    • pp.457-464
    • /
    • 2020
  • This study aims to recognize customers' real sentiment and then discover the data-driven insights for strategic decision-making in the financial sector of Saudi Arabia. The data was collected from the social media (Facebook and Twitter) from start till October 2018 in financial companies (NCB, Al Rajhi, and Bupa) selected in the Kingdom of Saudi Arabia according to criteria. Then, it was analyzed using a sentiment analysis, one of data mining techniques. All three companies have similar likes and followers as they serve customers as B2B and B2C companies. In addition, for Al Rajhi no negative sentiment was detected in English posts, while it can be seen that Internet penetration of both banks are higher than BUPA, rarely mentioned in few hours. This study helps to predict the overall popularity as well as the perception or real mood of people by identifying the positive and negative feelings or emotions behind customers' social media posts or messages. This research presents meaningful insights in data-driven approaches using a specific data mining technique as a tool for corporate decision-making and forecasting. Understanding what the key issues are from customers' perspective, it becomes possible to develop a better data-based global strategies to create a sustainable competitive advantage.

A Study on the Analysis Method of ICT Policy Triggering Mechanism Using Social Big Data (소셜 빅데이터 특성을 활용한 ICT 정책 격발 메커니즘 분석방법 제안)

  • Choi, Hong Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1192-1201
    • /
    • 2021
  • This study focused on how to analyze the ICT policy formation process using social big data. Specifically, in this study, a method for quantifying variables that influenced policy formation using the concept of a policy triggering mechanism and elements necessary to present the analysis results were proposed. For the analysis of the ICT policy triggering mechanism, variables such as 'Scope', 'Duration', 'Interactivity', 'Diversity', 'Attention', 'Preference', 'Transmutability' were proposed. In addition, 'interpretation of results according to data level', 'presentation of differences between collection and analysis time points', and 'setting of garbage level' were suggested as elements necessary to present the analysis results.

Automatic Generation of Issue Analysis Report Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성)

  • Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.553-564
    • /
    • 2014
  • In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.

Trends of South Korea's Informatization and Libraries' Role Based on Newspaper Big Data (신문 빅데이터를 바탕으로 본 국내 정보화의 경향과 도서관의 역할)

  • Na, Kyoungsik;Lee, Jisu
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.14-33
    • /
    • 2018
  • The purpose of this study to analyze the informatization trends in Korea through objective newspaper data for the period from 1998 to 2017 for informatization and library in four newspapers including KyoungHyang Newspaper, Kookmin Ilbo, Hankyoreh and Hankookilbo. Based on the analysis results of metadata and related words using BIGKinds, a news big data system, this study presented analysis of simple frequency, classification and classification of the keywords 'information', 'informatization' and 'library'. Based on the results, we compared and analyzed the tendency of informatization in the media through comparison with the 'Information White Paper' which is the publication of government agencies and with research about the research topic of 4 academic journals in the Library and Information Science field. This study tried to interpret the trends of informatization based on the media and it is meaningful that we analyzed the big data of newspaper article which is the long term and time series data. Based on the results of the study, implications of the growth and development of libraries with domestic informatization were suggested. It is expected that we will be able to create a basic framework for developing library informatization policy through the further studies.

The Development of Remodeling Process for Visual Content's Story by Big Data (빅데이터를 활용한 영상콘텐츠 스토리 리모델링 프로세스 개발)

  • Lee, Hye-Won;Park, Sung-Won;Kim, Lee-Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.3
    • /
    • pp.121-134
    • /
    • 2019
  • The Fourth Industrial Revolution has differentiated technologies such as artificial intelligence, IoT(Internet of things), big data, and mobile. As the civilization develops more and more, humanity enjoy the cultural activities more than economic activity for the food and shelter. The platform structure based on the advanced information technology of the present will expand the cultural contents area in a variety of ways. Cultural contents respond sensitively to changes in consumer and will be useful experiences of human activities. Therefore, it should be noted again that the contents industry should not be limited to the discussion of the application of the fourth technology, but should be produced with emphasis on useful experiences of human being. In other words, the discussion of human activities around cultural contents should be focused on how to apply beyond the use of fourth industrial technology. Therefore, it is necessary to analyze the basis of the successful storytelling of the planning stage to connect the fourth industrial technology and human useful experience as a method for developing cultural contents, and to build and propose a model as a strategic method. This study analyzes domestic and foreign cases made by using big data among the visual contents which show continuous increase of consumption among culture industry field, and draws success factors and limit points. Next, we extract what is the successful matching factor that influenced consumer 's consciousness, and find out that the structure of culture prototype has been applied in the long history of mankind, and presents it as a storytelling model. Through the above research, this study aims to present a new interpretation and creative activity of cultural contents by presenting a storytelling model as a methodology for connecting creative knowledge, away from the general interpretation of social phenomenon applied with big data.

An Investigation of a Sensibility Evaluation Method Using Big Data in the Field of Design -Focusing on Hanbok Related Design Factors, Sensibility Responses, and Evaluation Terms- (디자인 분야에서 빅데이터를 활용한 감성평가방법 모색 -한복 연관 디자인 요소, 감성적 반응, 평가어휘를 중심으로-)

  • An, Hyosun;Lee, Inseong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.6
    • /
    • pp.1034-1044
    • /
    • 2016
  • This study seeks a method to objectively evaluate sensibility based on Big Data in the field of design. In order to do so, this study examined the sensibility responses on design factors for the public through a network analysis of texts displayed in social media. 'Hanbok', a formal clothing that represents Korea, was selected as the subject for the research methodology. We then collected 47,677 keywords related to Hanbok from 12,000 posts on Naver blogs from January $1^{st}$ to December $31^{st}$ 2015 and that analyzed using social matrix (a Big Data analysis software) rather than using previous survey methods. We also derived 56 key-words related to design elements and sensibility responses of Hanbok. Centrality analysis and CONCOR analysis were conducted using Ucinet6. The visualization of the network text analysis allowed the categorization of the main design factors of Hanbok with evaluation terms that mean positive, negative, and neutral sensibility responses. We also derived key evaluation factors for Hanbok as fitting, rationality, trend, and uniqueness. The evaluation terms extracted based on natural language processing technologies of atypical data have validity as a scale for evaluation and are expected to be suitable for utilization in an index for sensibility evaluation that supplements the limits of previous surveys and statistical analysis methods. The network text analysis method used in this study provides new guidelines for the use of Big Data involving sensibility evaluation methods in the field of design.

Analysis of COVID-19 Pandemic based on Massive Big Data Analysis (대규모 빅데이터 분석 기반 COVID-19 Pandemic 분석결과)

  • Kim, Na-Hyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.495-500
    • /
    • 2021
  • This paper is to identify the recent growing crisis from coronavirus infections-19, using domestic news big data. This paper analyzed media articles related to the crisis caused by COVID-19 using the Korea Press Foundation's news big data analysis system 'BIGKinds'. In this paper, a total of 54 media articles were extracted around the keywords 'Corona' and 'Crisis', after a period of about 10 months. We want to understand the correlation coefficient between the two keywords "Corona" and "Crisis" and to understand what kind of crisis the COVID-19 is facing for each representative category of economy, society, international and cultural. As the COVID-19 crisis is taking a heavy toll on the economy, society and any other categories, this research using big data is expected to be used as a basic data to overcome the crisis of COVID-19.

How Does the Media Deal with Artificial Intelligence?: Analyzing Articles in Korea and the US through Big Data Analysis (언론은 인공지능(AI)을 어떻게 다루는가?: 뉴스 빅데이터를 통한 한국과 미국의 보도 경향 분석)

  • Park, Jong Hwa;Kim, Min Sung;Kim, Jung Hwan
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.175-195
    • /
    • 2022
  • Purpose The purpose of this study is to examine news articles and analyze trends and key agendas related to artificial intelligence(AI). In particular, this study tried to compare the reporting behaviors of Korea and the United States, which is considered to be a leader in the field of AI. Design/methodology/approach This study analyzed news articles using a big data method. Specifically, main agendas of the two countries were derived and compared through the keyword frequency analysis, topic modeling, and language network analysis. Findings As a result of the keyword analysis, the introduction of AI and related services were reported importantly in Korea. In the US, the war of hegemony led by giant IT companies were widely covered in the media. The main topics in Korean media were 'Strategy in the 4th Industrial Revolution Era', 'Building a Digital Platform', 'Cultivating Future human resources', 'Building AI applications', 'Introduction of Chatbot Services', 'Launching AI Speaker', and 'Alphago Match'. The main topics of US media coverage were 'The Bright and Dark Sides of Future Technology', 'The War of Technology Hegemony', 'The Future of Mobility', 'AI and Daily Life', 'Social Media and Fake News', and 'The Emergence of Robots and the Future of Jobs'. The keywords with high centrality in Korea were 'release', 'service', 'base', 'robot', 'era', and 'Baduk or Go'. In the US, they were 'Google', 'Amazon', 'Facebook', 'China', 'Car', and 'Robot'.

The big data analysis framework of information security policy based on security incidents

  • Jeong, Seong Hoon;Kim, Huy Kang;Woo, Jiyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.73-81
    • /
    • 2017
  • In this paper, we propose an analysis framework to capture the trends of information security incidents and evaluate the security policy based on the incident analysis. We build a big data from news media collecting security incidents news and policy news, identify key trends in information security from this, and present an analytical method for evaluating policies from the point of view of incidents. In more specific, we propose a network-based analysis model that allows us to easily identify the trends of information security incidents and policy at a glance, and a cosine similarity measure to find important events from incidents and policy announcements.