Smartphones provide users with environment for communication and sharing information and at the same time play an important role of mobile technology and mobile art development. Smartphone technology-related researches are being accelerated especially with the advent of mobile Augmented Reality(AR) age, but the studies on user participation that is essential for AR content industry were insufficient. In that regard, the assistance from mobile art area that has already developed these characteristics is essential. Thus, this article is to classify mobile art that has not been studied a lot domestically into feature phone usage and smartphone usage and to analyze each example case with the three most used methods. The usage of feature phones which use the sound and images of mobile devices can be divided into three: installation and performing methods, single channel video art method and five senses communication method. On the other hand, the usage of smartphones that use sensors, cameras, GPS and AR can be divided into location-based AR, marker-based AR and markerless AR. Also, as a result of examining mobile AR content utilization technology by industries, combined methods are utilized; tourism and game-related industries use location-based AR, education and medicine-related industries use marker-based AR, and shopping-related industries use markerless AR. The development of AR content industry is expected to be accelerated with mobile art that makes use of combined technology method and constant communication method through active participation of users. The future development direction of mobile AR industry is predicted to have minimized HMD, integration of hologram technology and artificial intelligence and make the most of big data and social network so that we could overcome the technological limitation of AR.
Predictions of consolidation settlement and time must be always erroneous because of heterogeneity of soil media. errors associated with the measurement of soil parameters, drawback of consolidation theories and so on. When filling is done on compressible soils, the observational procedure is a useful means in practice of evaluating the final consolidation settlement and time. However, the existing observational procedures including some disadvantages such as the difficulty of ending the linearity in the settlement curves, the unavoidable personal error, and so on. A new observational procedure($\sqrt{s}$ method) is suggested here for the consolidation analysis in field. As the results of applying the $\sqrt{s}$ method with other methods to two field data. the fecal settlements predicted by the s method as well as by the Asaoka'$\sqrt{s}$ method agreed well with the measured values. However, results obtained from the hyperbolic method(Tan, 1991) were always overestimated. and there happened many cases not to be predicted by the Hoshino's method. In the settlement curve from the $\sqrt{s}$method, the linearity between 60 and 90 eye of the average degree of consolidation is shown. and then the possibility of a personal error seems to be unusual. The final consolidation times(at $U_{95}$) predicted by the $\sqrt{s}$ method agreed well with the measured ones. but the ones by Asaoka and Tan(1996) methods were very much underestimated or overestimated. where $U_{95}$, is the average degree of consolidation of 95%. The big errors of these two methods seem to result from unconsidering the effect of stage construction.
This study extracts topics related to university education through newspaper articles and analyzes the characteristics of each topic and the reporting patterns of each newspaper. The 9 topics were discovered using LDA. Topic 1 and Topic 3 are related to university support projects for education, but Topic 3 is focused on local universities. Topic 2 is about university education after COVID-19, Topic 4 teaching-learning methods, Topic 5 government policies, Topic 6 the high school education contribution university support projects, Topic 7 the university education vision, Topic 8 internationalization, and Topic 9 the entrance exam. The Chosun Ilbo, Kyunghyang, and Hankyoreh reported a lot of articles associated to lectures after COVID-19, government policies, and comments on university education. Relevant articles since 2016 have been analyzed by newspaper type and before/after COVID-19 through which differences in the topics were studied and discussed. These findings would suggest a basic policy guideline for university education and imply that the positive and negative effects of the media need to be considered.
Journal of the Korean Society of Earth Science Education
/
v.13
no.3
/
pp.305-316
/
2020
This study aimed to analyze the conception of an extra-solar planet perceived by university students. To conduct this, we developed an extra-solar planet education program and questionnaires which help to figure out changes between before and after the program, and then applied them to the targeted students. The results of the study are as follows. First, as to the conception of an extra-solar planet, participants understood it merely as a planet outside the solar system before they got training. However, they expanded it to the one revolving around a star that appears outside the solar system based on keywords after the training. Second, they gave brief responses regarding exploration strategies (e.g., observing the extra-solar planet by using the Doppler effect, dietary phenomenon, and gravitational lens) based on indirect experiences they encountered in the media. The responses indicated their lack of concept of the extra-solar planet exploration methods. However, their recognition of the extra-solar planet observation became concrete while students learned about the exploration of the extra-solar planet. Third, they were expanding the importance of the exoplanet observation simply beyond the discovery of extraterrestrial life to the creative process and research methods, including the solar system and the development of humanity. Fourth, they recognized that exoplanet education is necessary for curriculum as it will be able to bring about students' interest and curiosity as well as scientific knowledge if contents related to the extra-solar planet appear in the earth science curriculum.
KIPS Transactions on Software and Data Engineering
/
v.11
no.4
/
pp.149-156
/
2022
In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.
Journal of Korea Entertainment Industry Association
/
v.15
no.4
/
pp.15-29
/
2021
Many countries and companies are pursuing and developing Artificial intelligence as it is the core technology of the 4th industrial revolution. Global IT companies such as Apple, Microsoft, Amazon, Google and Samsung have all released their own AI assistant hardware products, hoping to increase customer loyalty and capture market share. Competition within the industry for AI agent is intense. AI assistant products that command the biggest market shares and customer loyalty have a higher chance of becoming the industry standard. This study analyzed the current status of major overseas and domestic IT companies in the field of artificial intelligence, and suggested future strategic directions for voice UI technology development and user satisfaction. In terms of B2B technology, it is recommended that IT companies use cloud computing to store big data, innovative artificial intelligence technologies and natural language technologies. Offering voice recognition technologies on the cloud enables smaller companies to take advantage of such technologies at considerably less expense. Companies also consider using GPT-3(Generative Pre-trained Transformer 3) an open source artificial intelligence language processing software that can generate very natural human-like interactions and high levels of user satisfaction. There is a need to increase usefulness and usability to enhance user satisfaction. This study has practical and theoretical implications for industry and academia.
Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.
The Journal of the Convergence on Culture Technology
/
v.7
no.2
/
pp.85-95
/
2021
Currently, we stand between computers as creative tools and computers as creators. A new genre of movies, which can be called a post-cinema situation, is emerging. This paper aims to diagnose the possibility of the emergence of AI cinema. To confirm the possibility of AI cinema, it was examined through a case study whether the creation of a story, narrative, image, and sound, which are necessary conditions for film creation, is possible by artificial intelligence. First, we checked the visual creation of AI painting algorithms Obvious, GAN, and CAN. Second, AI music has already entered the distribution stage in the market in cooperation with humans. Third, AI can already complete drama scripts, and automatic scenario creation programs using big data are also gaining popularity. That said, we confirmed that the filmmaking requirements could be met with AI algorithms. From the perspective of Manovich's 'AI Genre Convention', web documentaries and desktop documentaries, typical trends post-cinema, can be said to be representative genres that can be expected as AI cinemas. The conditions for AI, web documentaries and desktop documentaries to exist are the same. This article suggests a new path for the media of the 4th Industrial Revolution era through research on AI as a creator of post-cinema.
Currently, the domestic traditional market has not escaped the swamp of stagnation that began in the early 2000s despite various projects promoted by many related players such as the central government and local governments. In order to overcome the crisis faced by the traditional market, various R&Ds have recently been conducted on how to build a smart traditional market that combines information and communication technologies such as big data analysis, artificial intelligence, and the Internet of Things. This study analyzes various previous studies, users of traditional markets, and application cases of ICT technology in foreign traditional markets since 2012 and proposes a model to build a smart traditional market using ICT technology based on the analysis. The model proposed in this study includes building a traditional market metaverse that can interact with visitors, certifying visits to traditional markets through digital signage with NFC technology, improving accuracy of fire detection functions using IoT and AI technology, developing smartphone apps for market launch information and event notification, and an e-commerce system. If a smart traditional market platform is implemented and operated based on the smart traditional market platform model presented in this study, it will not only draw interest in the traditional market to MZ generation and foreigners, but also contribute to revitalizing the traditional market in the future.
Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.