• Title/Summary/Keyword: Media big data

Search Result 531, Processing Time 0.025 seconds

Network Analysis of Keywords Related to Korean Nurse: Focusing on YouTube Video Titles (국내 간호사 관련 동영상 키워드의 네트워크 분석: 유튜브 동영상 제목을 중심으로)

  • Lee, Dongkyun;Lee, Youngjin;Lee, Bogyeong;Kim, Sujin;Park, Haejin;Bae, Sun Hyoung
    • Journal of Home Health Care Nursing
    • /
    • v.29 no.3
    • /
    • pp.278-287
    • /
    • 2022
  • Purpose: To analyze Korean nurse-related channels and video titles on YouTube, the world's largest online video sharing and social media platform, to clarify public opinion and image of nurses. We seek utilization strategies and measures through current status analysis. Methods: Data is collected by crawling video information related to Korean nurses, and correlation is analyzed with frequent word analysis and keyword network analysis. Results: Through the YouTube algorithm, 2,273 videos of 'Nurse' were analyzed in order of recent views, relevance, and rating, and 2,912 videos searched for with the keyword 'Nurse + Hospital, COVID-19, Awareness, University, National Examination' were analyzed. Numerous videos were uploaded, and nursing work that was uploaded in the form of a vlog recorded a high number of views. Conclusion: We could see if the YouTube video shows images of nurses. It has been confirmed that various information is being exchanged rather than information just for promotional purposes.

An Empirical Study on the Participatory Use of K-Pop Video Contents (케이팝 콘텐츠의 참여적 이용에 관한 연구 : 유튜브 콘텐츠 관계망분석(SNA)을 중심으로)

  • Kim, H. Jin;Ahn, Minho
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • It is apparently clear that K-pop has been expanding its influence overseas, with its high growth rate. As a result, attempts have been made to analyze the characteristics of K-Pop in various academic fields. This research quantitatively used the participatory use process of K-Pop contents in voluntary participation and dissemination of the audience in the Trans-Media environment. The author examined the use of participatory K-Pop contents from the view point of reparability through big data content analysis. It has been revealed that K-Pop is spreading globally through social media, fans of various countries like to play K-Pop, and they make up their own content and form a participatory culture. In addition, we looked at when the moments of momentum in which participatory use is soaring were popular content and who was the publisher.

Automated Story Generation with Image Captions and Recursiva Calls (이미지 캡션 및 재귀호출을 통한 스토리 생성 방법)

  • Isle Jeon;Dongha Jo;Mikyeong Moon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2023
  • The development of technology has achieved digital innovation throughout the media industry, including production techniques and editing technologies, and has brought diversity in the form of consumer viewing through the OTT service and streaming era. The convergence of big data and deep learning networks automatically generated text in format such as news articles, novels, and scripts, but there were insufficient studies that reflected the author's intention and generated story with contextually smooth. In this paper, we describe the flow of pictures in the storyboard with image caption generation techniques, and the automatic generation of story-tailored scenarios through language models. Image caption using CNN and Attention Mechanism, we generate sentences describing pictures on the storyboard, and input the generated sentences into the artificial intelligence natural language processing model KoGPT-2 in order to automatically generate scenarios that meet the planning intention. Through this paper, the author's intention and story customized scenarios are created in large quantities to alleviate the pain of content creation, and artificial intelligence participates in the overall process of digital content production to activate media intelligence.

A Study of the Advanced Strategy for ICT-based Public Compensation Business (ICT 기반 공익사업 보상업무 첨단화 방안 연구)

  • Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • Compensation services that are indispensable during large-scale public utilities projects have been gradually increasing with the recent increase in construction, but there are no systematic compensation services due to the complicated procedures and manual work. For this reason, various problems such as construction period delays due to various complaints, corruption in compensation work, and impossible to trace the history of compensation data in the past are emerging. In this paper, in order to solve this problem, in-depth interviews and questionnaires were conducted to find out the problems of each compensation status. Based on this, 3 core technologies and 10 technical needs based on ICT were selected to improve the compensation work by deriving STEEP analysis and Issue Tree. The three core technologies are big data-based decision-making and prediction technology, advanced measurement technology, and open cloud-based compensation platform technology. In order to introduce the derived technologies to the institutions in charge of compensation, the possibility of technology diffusion by project operators was suggested based on the results of the current status of informatization by institution. Based on the core technology derived from this paper, it is necessary to make a prototype that can be advanced in compensation work and apply it to each institution and analyze the effect.

Outdoor Healing Places Perception Analysis Using Named Entity Recognition of Social Media Big Data (소셜미디어 빅데이터의 개체명 인식을 활용한 옥외 힐링 장소 인식 분석)

  • Sung, Junghan;Lee, Kyungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.90-102
    • /
    • 2022
  • In recent years, as interest in healing increases, outdoor spaces with the concept of healing have been created. For more professional and in-depth planning and design, the perception and characteristics of outdoor healing places through social media posts were analyzed using NER. Text mining was conducted using 88,155 blog posts, and frequency analysis and clique cohesion analysis were conducted. Six elements were derived through a literature review, and two elements were added to analyze the perception and the characteristics of healing places. As a result, visitors considered place elements, date and time, social elements, and activity elements more important than personnel, psychological elements, plants and color, and form and shape when visiting healing places. The analysis allowed the derivation of perceptions and characteristics of healing places through keywords. From the results of the Clique, keywords, such as places, date and time, and relationship, were clustered, so it was possible to know where, when, what time, and with whom people were visiting places for healing. Through the study, the perception and characteristics of healing places were derived by analyzing large-scale data written by visitors. It was confirmed that specific elements could be used in planning and marketing.

Service Quality Evaluation based on Social Media Analytics: Focused on Airline Industry (소셜미디어 어낼리틱스 기반 서비스품질 평가: 항공산업을 중심으로)

  • Myoung-Ki Han;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.157-181
    • /
    • 2022
  • As competition in the airline industry intensifies, effective airline service quality evaluation has become one of the main challenges. In particular, as big data analytics has been touted as a new research paradigm, new research on service quality measurement using online review analysis has been attempted. However, these studies do not use review titles for analysis, relyon supervised learning that requires a lot of human intervention in learning, and do not consider airline characteristics in classifying service quality dimensions.To overcome the limitations of existing studies, this study attempts to measure airlines service quality and to classify it into the AIRQUAL service quality dimension using online review text as well as title based on self-trainingand sentiment analysis. The results show the way of effective extracting service quality dimensions of AIRQUAL from online reviews, and find that each service quality dimension have a significant effect on service satisfaction. Furthermore, the effect of review title on service satisfaction is also found to be significant. This study sheds new light on service quality measurement in airline industry by using an advanced analytical approach to analyze effects of service quality on customer satisfaction. This study also helps managers who want to improve customer satisfaction by providing high quality service in airline industry.

Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions (텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2021
  • The global spread of COVID-19 around the world has not only affected many parts of our daily life but also has a huge impact on many areas, including the economy and society. As the number of confirmed cases and deaths increases, medical staff and the public are said to be experiencing psychological problems such as anxiety, depression, and stress. The collective tragedy that accompanies the epidemic raises fear and anxiety, which is known to cause enormous disruptions to the behavior and psychological well-being of many. Long-term negative emotions can reduce people's immunity and destroy their physical balance, so it is essential to understand the psychological state of COVID-19. This study suggests a method of monitoring medial news reflecting current days which requires striving not only for physical but also for psychological quarantine in the prolonged COVID-19 situation. Moreover, it is presented how an easier method of analyzing social media networks applies to those cases. The aim of this study is to assist health policymakers in fast and complex decision-making processes. News plays a major role in setting the policy agenda. Among various major media, news headlines are considered important in the field of communication science as a summary of the core content that the media wants to convey to the audiences who read it. News data used in this study was easily collected using "Bigkinds" that is created by integrating big data technology. With the collected news data, keywords were classified through text mining, and the relationship between words was visualized through semantic network analysis between keywords. Using the KrKwic program, a Korean semantic network analysis tool, text mining was performed and the frequency of words was calculated to easily identify keywords. The frequency of words appearing in keywords of articles related to COVID-19 emotions was checked and visualized in word cloud 'China', 'anxiety', 'situation', 'mind', 'social', and 'health' appeared high in relation to the emotions of COVID-19. In addition, UCINET, a specialized social network analysis program, was used to analyze connection centrality and cluster analysis, and a method of visualizing a graph using Net Draw was performed. As a result of analyzing the connection centrality between each data, it was found that the most central keywords in the keyword-centric network were 'psychology', 'COVID-19', 'blue', and 'anxiety'. The network of frequency of co-occurrence among the keywords appearing in the headlines of the news was visualized as a graph. The thickness of the line on the graph is proportional to the frequency of co-occurrence, and if the frequency of two words appearing at the same time is high, it is indicated by a thick line. It can be seen that the 'COVID-blue' pair is displayed in the boldest, and the 'COVID-emotion' and 'COVID-anxiety' pairs are displayed with a relatively thick line. 'Blue' related to COVID-19 is a word that means depression, and it was confirmed that COVID-19 and depression are keywords that should be of interest now. The research methodology used in this study has the convenience of being able to quickly measure social phenomena and changes while reducing costs. In this study, by analyzing news headlines, we were able to identify people's feelings and perceptions on issues related to COVID-19 depression, and identify the main agendas to be analyzed by deriving important keywords. By presenting and visualizing the subject and important keywords related to the COVID-19 emotion at a time, medical policy managers will be able to be provided a variety of perspectives when identifying and researching the regarding phenomenon. It is expected that it can help to use it as basic data for support, treatment and service development for psychological quarantine issues related to COVID-19.

Application and Utilization of Environmental DNA Technology for Biodiversity in Water Ecosystems (수생태계 생물다양성 연구를 위한 환경유전자(environmental DNA) 기술의 적용과 활용)

  • Kwak, Ihn-Sil;Park, Young-Seuk;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.151-155
    • /
    • 2021
  • The application of environmental DNA in the domestic ecosystem is also accelerating, but the processing and analysis of the produced data is limited, and doubts are raised about the reliability of the analyzed and produced biological taxa identification data, and the sample medium (target sample, water, air, sediment, Gastric contents, feces, etc.) and quantification and improvement of analysis methods are also needed. Therefore, in order to secure the reliability and accuracy of biodiversity research using the environmental DNA of the domestic ecosystem, it is a process of actively using the database accumulated through ecological taxonomy and undergoing verification procedures, and experts verifying the resolution of the data increased by gene sequence analysis. This is absolutely necessary. Environmental DNA research cannot be solved only by applying molecular biology technology, and interdisciplinary research cooperation such as ecology-taxa identification-genetics-informatics is important to secure the reliability of the produced data, and researchers dealing with various media can approach it together. It is an area in desperate need of an information sharing platform that can do this, and the speed of development will proceed rapidly, and the accumulated data is expected to grow as big data within a few years.

Urban Landscape Image Study by Text Mining and Factor Analysis - Focused on Lotte World Tower - (텍스트 마이닝과 인자분석에 의한 도시경관이미지 연구 - 롯데월드타워를 대상으로 -)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.104-117
    • /
    • 2017
  • This study compares the results of landscape image analysis using text mining techniques and factor analysis for Lotte World Tower, which is the first atypical skyscraper building in Korea, and identifies landscape images of the site to determine possibilities of use. Lotte World Tower's landscape image has been extracted from text mining analysis focusing on adjectives such as 'new', 'transformational', 'unusual', 'novelty', 'impressive', and 'unique', and phrases such as in the process of change, people's active elements(caliber, outing, project, night view), media(newspaper, blog), and climate(weather, season). As a result of the factor analysis, factors affecting the landscape image of Lotte World Tower were symbolic, aesthetic, and formative. Identification, which is a morphological feature, has characteristics of scale and visibility but it is not statistically significant in preference. Rather, the psychological factors such as the symbolism with characteristics such as poison and specialty, harmony with the characteristics of the surrounding environment, and beautiful aesthetic characteristics were an influence on the landscape image. The common results of the two research methods show that psychological characteristics such as factors that can represent and represent the city affect the landscape image more greatly than the morphological and physical characteristics such as location and location of the building. In addition, the text mining technique can identify nouns and adjectives corresponding to the images that people see and feel, and confirms the relationship between the derived keywords, so that it can focus the process of forming the landscape image and further the image of the city. It would appear to be a suitable method to complement the limitation of landscape research. This study is meaningful in that it confirms the possibility that big data can be utilized in landscape analysis, which is one research field of landscape architecture, and is significant for understanding the information of a big data base and contribute to enlarging the landscape research area.

Point Cloud Video Codec using 3D DCT based Motion Estimation and Motion Compensation (3D DCT를 활용한 포인트 클라우드의 움직임 예측 및 보상 기법)

  • Lee, Minseok;Kim, Boyeun;Yoon, Sangeun;Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.680-691
    • /
    • 2021
  • Due to the recent developments of attaining 3D contents by using devices such as 3D scanners, the diversity of the contents being used in AR(Augmented Reality)/VR(Virutal Reality) fields is significantly increasing. There are several ways to represent 3D data, and using point clouds is one of them. A point cloud is a cluster of points, having the advantage of being able to attain actual 3D data with high precision. However, in order to express 3D contents, much more data is required compared to that of 2D images. The size of data needed to represent dynamic 3D point cloud objects that consists of multiple frames is especially big, and that is why an efficient compression technology for this kind of data must be developed. In this paper, a motion estimation and compensation method for dynamic point cloud objects using 3D DCT is proposed. This will lead to switching the 3D video frames into I frames and P frames, which ensures higher compression ratio. Then, we confirm the compression efficiency of the proposed technology by comparing it with the anchor technology, an Intra-frame based compression method, and 2D-DCT based V-PCC.