• Title/Summary/Keyword: Media big data

Search Result 531, Processing Time 0.032 seconds

Identifying Research Trends in Big data-driven Digital Transformation Using Text Mining (텍스트마이닝을 활용한 빅데이터 기반의 디지털 트랜스포메이션 연구동향 파악)

  • Minjun, Kim
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.54-64
    • /
    • 2022
  • A big data-driven digital transformation is defined as a process that aims to innovate companies by triggering significant changes to their capabilities and designs through the use of big data and various technologies. For a successful big data-driven digital transformation, reviewing related literature, which enhances the understanding of research statuses and the identification of key research topics and relationships among key topics, is necessary. However, understanding and describing literature is challenging, considering its volume and variety. Establishing a common ground for central concepts is essential for science. To clarify key research topics on the big data-driven digital transformation, we carry out a comprehensive literature review by performing text mining of 439 articles. Text mining is applied to learn and identify specific topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview. A total of 10 key research topics and relationships among the topics are identified. This study contributes to clarifying a systematized view of dispersed studies on big data-driven digital transformation across multiple disciplines and encourages further academic discussions and industrial transformation.

A Study on the Effect of the Name Node and Data Node on the Big Data Processing Performance in a Hadoop Cluster (Hadoop 클러스터에서 네임 노드와 데이터 노드가 빅 데이터처리 성능에 미치는 영향에 관한 연구)

  • Lee, Younghun;Kim, Yongil
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Big data processing processes various types of data such as files, images, and video to solve problems and provide insightful useful information. Currently, various platforms are used for big data processing, but many organizations and enterprises are using Hadoop for big data processing due to the simplicity, productivity, scalability, and fault tolerance of Hadoop. In addition, Hadoop can build clusters on various hardware platforms and handle big data by dividing into a name node (master) and a data node (slave). In this paper, we use a fully distributed mode used by actual institutions and companies as an operation mode. We have constructed a Hadoop cluster using a low-power and low-cost single board for smooth experiment. The performance analysis of Name node is compared through the same data processing using single board and laptop as name nodes. Analysis of influence by number of data nodes increases the number of data nodes by two times from the number of existing clusters. The effect of the above experiment was analyzed.

A Study on Sentiment Analysis of Media and SNS response to National Policy: focusing on policy of Child allowance, Childbirth grant (국가 정책에 대한 언론과 SNS 반응의 감성 분석 연구 -아동 수당, 출산 장려금 정책을 중심으로-)

  • Yun, Hye Min;Choi, Eun Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Nowadays as the use of mobile communication devices such as smart phones and tablets and the use of Computer is expanded, data is being collected exponentially on the Internet. In addition, due to the development of SNS, users can freely communicate with each other and share information in various fields, so various opinions are accumulated in the from of big data. Accordingly, big data analysis techniques are being used to find out the difference between the response of the general public and the response of the media. In this paper, we analyzed the public response in SNS about child allowance and childbirth grant and analyzed the response of the media. Therefore we gathered articles and comments of users which were posted on Twitter for a certain period of time and crawling the news articles and applied sentiment analysis. From these data, we compared the opinion of the public posted on SNS with the response of the media expressed in news articles. As a result, we found that there is a different response to some national policy between the public and the media.

Big Data Analysis on the Perception of Home Training According to the Implementation of COVID-19 Social Distancing

  • Hyun-Chang Keum;Kyung-Won Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2023
  • Due to the implementation of COVID-19 distancing, interest and users in 'home training' are rapidly increasing. Therefore, the purpose of this study is to identify the perception of 'home training' through big data analysis on social media channels and provide basic data to related business sector. Social media channels collected big data from various news and social content provided on Naver and Google sites. Data for three years from March 22, 2020 were collected based on the time when COVID-19 distancing was implemented in Korea. The collected data included 4,000 Naver blogs, 2,673 news, 4,000 cafes, 3,989 knowledge IN, and 953 Google channel news. These data analyzed TF and TF-IDF through text mining, and through this, semantic network analysis was conducted on 70 keywords, big data analysis programs such as Textom and Ucinet were used for social big data analysis, and NetDraw was used for visualization. As a result of text mining analysis, 'home training' was found the most frequently in relation to TF with 4,045 times. The next order is 'exercise', 'Homt', 'house', 'apparatus', 'recommendation', and 'diet'. Regarding TF-IDF, the main keywords are 'exercise', 'apparatus', 'home', 'house', 'diet', 'recommendation', and 'mat'. Based on these results, 70 keywords with high frequency were extracted, and then semantic indicators and centrality analysis were conducted. Finally, through CONCOR analysis, it was clustered into 'purchase cluster', 'equipment cluster', 'diet cluster', and 'execute method cluster'. For the results of these four clusters, basic data on the 'home training' business sector were presented based on consumers' main perception of 'home training' and analysis of the meaning network.

A Strategy Study on Sensitive Information Filtering for Personal Information Protect in Big Data Analyze

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.101-108
    • /
    • 2017
  • The study proposed a system that filters the data that is entered when analyzing big data such as SNS and BLOG. Personal information includes impersonal personal information, but there is also personal information that distinguishes it from personal information, such as religious institution, personal feelings, thoughts, or beliefs. Define these personally identifiable information as sensitive information. In order to prevent this, Article 23 of the Privacy Act has clauses on the collection and utilization of the information. The proposed system structure is divided into two stages, including Big Data Processing Processes and Sensitive Information Filtering Processes, and Big Data processing is analyzed and applied in Big Data collection in four stages. Big Data Processing Processes include data collection and storage, vocabulary analysis and parsing and semantics. Sensitive Information Filtering Processes includes sensitive information questionnaires, establishing sensitive information DB, qualifying information, filtering sensitive information, and reliability analysis. As a result, the number of Big Data performed in the experiment was carried out at 84.13%, until 7553 of 8978 was produced to create the Ontology Generation. There is considerable significan ce to the point that Performing a sensitive information cut phase was carried out by 98%.

Design of a Disaster Big Data Platform for Collecting and Analyzing Social Media (소셜미디어 수집과 분석을 위한 재난 빅 데이터 플랫폼의 설계)

  • Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Nguyen, Giang-Truong;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.661-664
    • /
    • 2017
  • Recently, during disasters occurrence, dealing with emergencies has been handled well by the early transmission of disaster relating notifications on social media networks (e.g., Twitter or Facebook). Intuitively, with their characteristics (e.g., real-time, mobility) and big communities whose users could be regarded as volunteers, social networks are proved to be a crucial role for disasters response. However, the amount of data transmitted during disasters is an obstacle for filtering informative messages; because the messages are diversity, large and very noise. This large volume of data could be seen as Social Big Data (SBD). In this paper, we proposed a big data platform for collecting and analyzing disasters' data from SBD. Firstly, we designed a collecting module; which could rapidly extract disasters' information from the Twitter; by big data frameworks supporting streaming data on distributed system; such as Kafka and Spark. Secondly, we developed an analyzing module which learned from SBD to distinguish the useful information from the irrelevant one. Finally, we also designed a real-time visualization on the web interface for displaying the results of analysis phase. To show the viability of our platform, we conducted experiments of the collecting and analyzing phases in 10 days for both real-time and historical tweets, which were about disasters happened in South Korea. The results prove that our big data platform could be applied to disaster information based systems, by providing a huge relevant data; which can be used for inferring affected regions and victims in disaster situations, from 21.000 collected tweets.

Framing city image: A content analysis of Chinese city image construction on Korean press

  • YANG Ting;LIU Jing
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.158-168
    • /
    • 2024
  • With Wenhai big data SaaS cloud platform.2.0, this study analyzed data of 135 news reports relating to Chinese city Chongqing from Yonhap News Agency and ten South Korean mainstream newspapers from May 1st, 2018 to September 30th, 2022. Under the framework of Frame Theory, this research conducted data mining and analysis on how Korean mainstream media shaped city image of Chongqing, what kind of city images were shaped from dimensions of politics, economy, society, culture & sports as well as tourism and whether they are consistent with those in Chinese media. At the last part, discussions and suggestions was made.

Evaluating Conversion Rate from Advertising in Social Media using Big Data Clustering

  • Alyoubi, Khaled H.;Alotaibi, Fahd S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.305-316
    • /
    • 2021
  • The objective is to recognize the better opportunities from targeted reveal advertising, to show a banner ad to the consumer of online who is most expected to obtain a preferred action like signing up for a newsletter or buying a product. Discovering the most excellent commercial impression, it means the chance to exhibit an advertisement to a consumer needs the capability to calculate the probability that the consumer who perceives the advertisement on the users browser will acquire an accomplishment, that is the consumer will convert. On the other hand, conversion possibility assessment is a demanding process since there is tremendous data growth across different information dimensions and the adaptation event occurs infrequently. Retailers and manufacturers extensively employ the retail services from internet as part of a multichannel distribution and promotion strategy. The rate at which web site visitors transfer to consumers is low for online retail, out coming in high customer acquisition expenses. Approximately 96 percent of web site users concluded exclusive of no shopper purchase[1].This category of conversion rate is collected from the advertising of social media sites and pages that dataset must be estimating and assessing with the concept of big data clustering, which is used to group the particular age group of people along with their behavior. This makes to identify the proper consumer of the production which leads to improve the profitability of the concern.

Exploratory Study on the Media Coverage Trends of Personal Information Issues for Corporate Sustainable Management

  • Dabin Lee;Yeji Choi;Jaewook Byun;Hangbae Chang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.87-96
    • /
    • 2024
  • Information power has been a major criterion for wealth disparity in human history, and since the advent of the Fourth Industrial Revolution, referred to as the data economy era, personal information has also gained economic value. Additionally, companies collect and analyze customer information to use as a marketing tool, providing personalized services, making the collection of quality customer information crucial to a company's success. However, as the amount of data held by companies increases, crimes of stealing personal information for financial gain have surged, making corporate customer information a target for criminals. The leakage of personal information and its circumstances lead to a decline in corporate trust from the customer's perspective, threatening corporate sustainability with falling stock prices and decreased sales. Therefore, companies find themselves in a paradoxical situation where the utilization of personal information is increasing while the risk of personal information leakage is also growing. This study used the news big data analysis system, BIG KINDS, to analyze major keywords before and after media coverage on personal information leaks, examining domestic media coverage trends. Through this, we identified the impact of personal information leakage on corporate sustainability and analyzed the connection between personal information protection and sustainable corporate management. The results derived from this study are expected to serve as foundational data for companies seeking ways to enhance sustainable management while increasing the utilization of personal information.

A Public Perception Study on the new word "Corona Blue":Focusing on Social Media Big Data Analysis

  • Ann, Myung Suk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.133-139
    • /
    • 2020
  • The purpose of this study is to contribute to the provision of basic data for psychological quarantine policy and counseling by examining the public perception of the "corona blue" phenomenon through analysis of social media big data. To do this, key words related to the word 'Corona Blue' were derived and analyzed using the big data analysis program 'Textom'. As a result of the analysis, words such as 'Corona 19', 'depression', 'problem' and 'overcome' were derived as key words. For the analysis results,"pride and awarenes as the public perception of Corona 19", "depression and anxiety as a group trauma as the corona blue phenomenon", "spreading a psychological quarantine culture and demanding social healing as the perception of overcoming corona Blue," and "hope for return to daily life and changes in daily life as the perception of post corona" were discussed. In conclusion, we have identified the need for active psychological support from the community By revealing that Corona Blue is a depression as a group trauma. At this time, it is confirmed that it is necessary to prioritize social healing and psychological quarantine for the main risk groups such as youth or the vulnerable, who are the socially weak.