• Title/Summary/Keyword: Mechatronics System

Search Result 1,398, Processing Time 0.031 seconds

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

A Study on Moldability by Using Fuzzy Logic Based Neural Network(FNN)

  • Kang, Seong Nam;Huh, Yong Jeong;Choi, Man Sung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.127-129
    • /
    • 2002
  • In order to predict the moldability of an injection molded part, a simulation of filling is needed. Short shot is one of the most frequent troubles encountered during injection molding process. The adjustment of process conditions is the most economic way to troubleshoot the problematic short shot in cost and time since the mold doesn't need to be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, the intelligent CAE system synergistically combines fuzzy-neural network(FNN) for heuristic knowledge with CAE programs for analytical knowledge. To evaluate the intelligent algorithms, a cellular phone flip has been chosen as a finite element model and filling analyses have been performed with a commercial CAE software. As the results, the intelligent CAE system drastically reduces the troubleshooting time of short shot in comparison with the expert's conventional way which is similar to the golden section search algorithm.

  • PDF

An Output Controller based on dSPACE for Robot Manipulator in Tracking Following Tasks

  • Yang, Yeon-Mo;Park, Dae-Bum;Ahn, Byung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.117-122
    • /
    • 1998
  • The recent developments and studies in the framework of output tracking control in the field of robotics that has been studied in the Control Laboratory, are presented. An output controller based on“Hardware-ln-the-Loop Simulation”(HILS) and“Rapid Control Prototyping”(RCP) concepts is developed using dSPACE. These new concepts are shown to be particularly beneficial for manipulator control tasks. In the Elbow manipulator design, there are two kinds of manipulators, namely the serial-drive type and the parallelogram-drive manipulator, The objective of this research is to model the two Elbow manipulators and to implement the proposed controller for manipulator applications. The control goal is to force the manipulator to follow a given trajectory in the given work space. Output controllers of the two elbow manipulators that are based on the model matching control approach have been implemented in two models that represent the robot equations of motion. To reduce the efforts in evaluating the proposed algorithm, a new system configuration method, based on HILS and RCP tools, was suggested to determine the parameters of the integrated dynamic system.

  • PDF

Measurement of Thrust Induced by the Dielectric Barrier Discharge in Cylinder Pipes (실린더 내부 유전체 장벽방전에 의해 발생된 추력 측정)

  • Joo, Chan Kyu;Kim, Jong Hoon;Furudate, Michiko Ahn
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.56-63
    • /
    • 2017
  • Thrust force induced by the dielectric barrier discharge inside of cylinder pipes is measured for various conditions. The input peak-to-peak voltage and frequency are varied from 2 to 9 kVpp and from 5 to 15 kHz, respectively. The height of cylinder is varied from 50 to 100 mm. The results of the measurements show that the magnitude of the generated thrusts increases as the voltage and the frequencies increase. It also shows that the generated thrusts are decreased according to the increase in the height of the cylinder. The cause of the thrust decrease is discussed in terms of energy losses due to the frictions on the wall surface.

A Study on the Silicone Rubber of Sabot Assembly for the Velocity Multiplication of Mini Ball (소형구의 속도증폭을 위한 사보 조립체의 실리콘고무 특성 연구)

  • Kim, Young-Min;Jin, Doo-Han;Chung, Dong-Teak
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.395-401
    • /
    • 2015
  • A mini ball launch system was developed for the study of dynamic fracture of ceramic materials. The principle of velocity multiplication system is similar to two stage gun. The plastic sabot assembly houses steel plunger and the void filled with silicone rubber. The sabot is stopped by the stopper block then the steel plunger inside the sabot compress the silicone rubber to high pressure. Then the compressive energy of the silicone rubber is transferred to the ball. More than ten times of initial speed was attained. In this study, most effective silicone rubber for the highest final speed was chosen out of three different varieties by launch tests.

Fabrication and Experiment of Pneumatic Steel Plate Chamfering Machine and Sensor System for Active Control of Chamfering (면취 공정의 능동 제어를 위한 공압식 자동 강재 면취기와 센서 시스템의 제작 및 실험)

  • Na, Yeong-min;Lee, Hyun-seok;Kim, Min-hyo;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.80-86
    • /
    • 2020
  • With the exception of welding activities, it is forbidden to use electricity in shipyards, owing to safety concerns such as the possibility of fire, explosions, and short circuits. In this paper, an automatic chamfering machine using pneumatics is proposed for use in such environments. Customers specify their requirements and the machine derives the corresponding theoretical design conditions. The proposed machine was used to perform 3D modeling, and its suitability and performance were confirmed via cutting experiments of the manufactured device. Two types of sensors may be used in this system: contact and non-contact. In the case of the contact type, an end-stop switch that can recognize the end of the material is installed, and when the machine reaches the end of the material, the end-stop switch is operated to cut off the air pressure. In the non-contact type, four sensors were used: photonic, ultrasonic, metal detection, and encoder. The use of the four sensors was repeated 30 times, and the average error determined. Thus, the optimum sensor was identified.

Noise and Fault Diagonois Using Control Theory

  • Park, R. W.;J. S. Kook;S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.301-307
    • /
    • 1998
  • The goal of this paper is to describe an advanced method of the fault diagnois using Control Theory with reference to a crack detection, a new way to localize the crack position under infulence of the plant disturbance and white measurement noise on a rotating shaft. As a first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton - principle and in this way the system is modelled by various subsystems. The equations of motion with crack is established by adaption of the local stiffness change through breathing and gaping from the crack to the equation of motion with un-damaged shaft. This is supposed to be regarded as reference for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear State Observer is designed in order to detect the crack on the shaft. This is elementary NL- observer(EOB). Using the elementary observer, an Estimator(Observer) Bank is established and arranged at the certain position on the shaft. In case a crack is found and its position is known, the procedure for the estimation of the depth is going to begin.

  • PDF

A Study on the Active Vibration Isolator PID Auto-tuning Using PSO Algorithm (PSO알고리즘을 활용한 능동 제진 시스템 PID 오토 튜닝에 관한 연구)

  • An, Il Kyun;Huh, Heon;Kim, Hyo-Young;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2022
  • Vibration is one of the factors that degrades the performance of equipment and measurement equipment used in high-tech industries such as semiconductors and display. The vibration isolator is classified into passive type and active type. The passive vibration isolator has the weakness of insufficient vibration isolation performance in the low frequency band, so an active vibration control system that can overcome these problems is used recently. In this paper, PID controller is used to control the active vibration isolator. Methods for setting the gain of the PID controller include the Zeigler-Nichols method, the pole placement method. These methods have the disadvantage of requiring a lot of time or knowing the system model accurately. This paper proposes the gain auto tuning method of the active vibration isolator applied with the PSO algorithm, which is an optimization algorithm that is easy to implement and has stable convergence performance with low calculations. It is expected that it will be possible to improve vibration isolation performance and reduce the time required for gain tuning by applying the proposed PSO algorithm to the active vibration isolator.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Design and Development of a Novel High Resolution Absolute Rotary Encoder System Based on Affine n-digit N-ary Gray Code

  • Paul, Sarbajit;Chang, Junghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.943-952
    • /
    • 2018
  • This paper presents a new type of absolute rotary encoder system based on the affine n-digit N-ary gray code. A brief comparison of the existing encoder systems is carried out in terms of resolution, encoding and decoding principles and number of sensor heads needed. Using the proposed method, two different types of encoder disks are designed, namely, color-coded disk and grayscale coded disk. The designed coded disk pattern is used to manufacture 3 digit 3 ary and 2 digit 5 ary grayscale coded disks respectively. The manufactured disk is used with the light emitter and photodetector assembly to design the entire encode system. Experimental analysis is done on the designed prototype with LabVIEW platform for data acquisition. A comparison of the designed system is done with the traditional binary gray code encoder system in terms of resolution, disk diameter, number of tracks and data acquisition system. The resolution of the manufactured system is 3 times higher than the conventional system. Also, for a 5 digit 5 ary coded encoder system, a resolution approximately 100 times better than the conventional binary system can be achieved. In general, the proposed encoder system gives $(N/2)^n$ times better resolution compared with the traditional gray coded disk. The miniaturization in diameter of the coded disk can be achieved compared to the conventional binary systems.