DOI QR코드

DOI QR Code

실린더 내부 유전체 장벽방전에 의해 발생된 추력 측정

Measurement of Thrust Induced by the Dielectric Barrier Discharge in Cylinder Pipes

  • 주찬규 (충남대학교 메카트로닉스공학과) ;
  • 김종훈 (충남대학교 메카트로닉스공학과) ;
  • Joo, Chan Kyu (Dept. of Mechatronics Engineering, Chungnam National University) ;
  • Kim, Jong Hoon (Dept. of Mechatronics Engineering, Chungnam National University) ;
  • Furudate, Michiko Ahn (Dept. of Mechatronics Engineering, Chungnam National University)
  • 투고 : 2017.11.17
  • 심사 : 2017.12.28
  • 발행 : 2017.12.31

초록

유전체 장벽방전에 의해 발생되는 추력을 실린더 형상의 파이프 내부에서 여러 조건에 대해 측정하였다. 입력 전압 및 주파수는 각각 2에서 9 kVpp 및 5에서 15 kHz를 적용하였으며, 높이가 50 mm부터 100 mm 범위의 실린더에 대해 실험을 수행하였다. 측정 결과에 따르면, 발생된 추력의 크기는 전압 및 주파수를 증가시킬 경우 각각 증가하였으나 실린더의 높이가 증가하면 감소하였다. 실린더 높이가 증가할 때 발생된 추력의 감소는 벽면과의 마찰로 인한 유동의 에너지 손실이 원인이지만, $Coand\check{a}$ 효과의 감소 등 그 외의 추가적인 원인이 있다고 추정된다.

Thrust force induced by the dielectric barrier discharge inside of cylinder pipes is measured for various conditions. The input peak-to-peak voltage and frequency are varied from 2 to 9 kVpp and from 5 to 15 kHz, respectively. The height of cylinder is varied from 50 to 100 mm. The results of the measurements show that the magnitude of the generated thrusts increases as the voltage and the frequencies increase. It also shows that the generated thrusts are decreased according to the increase in the height of the cylinder. The cause of the thrust decrease is discussed in terms of energy losses due to the frictions on the wall surface.

키워드

참고문헌

  1. Y. Sung, W. Kim, M. G. Mungal, and M. A. Cappelli, "Aerodynamic modification of flow over bluff objects by plasma actuation," Experiments in Fluids, vol. 41, no. 3, pp. 479-486, Aug. 2006. https://doi.org/10.1007/s00348-006-0175-0
  2. K.-S. Choi, T. Jukes, and R. Whalley, "Turbulent boundary-layer control with plasma actuators," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1940, pp. 1443-1458, Apr. 2011. https://doi.org/10.1098/rsta.2010.0362
  3. W.-R. Shim, E.-J. Park, K.-D. Kim, Y.-S. Kim, S.-H. Park, J.-H. Roh, "Design of flap devices driven by SMA spring actuators," Jouranl of Aerospace System Engineering, Vol.4, No.4, pp.11-17, December, 2010.
  4. .Y. Park*, H. Kang**, J. Chung*, H.-C. Lee, "Optimization of Flap Shape and Position for Two-dimensional High Lift Device," Jouranl of Aerospace System Engineering, Vol.7, No.3, pp.1-6, September, 2013.
  5. .A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, "odeling of dielectric barrier discharge plasma actuator in air," Journal of Applied Physics, vol. 103, no. 5, p. 053305, Mar. 2008. https://doi.org/10.1063/1.2837890
  6. D. P. Rizzetta and M. R. Visbal, "Large Eddy Simulation of Plasma-Based Control Strategies for Bluff Body Flow,"AIAA Journal, vol. 47, no. 3, pp. 717-729, Mar. 2009. https://doi.org/10.2514/1.39168
  7. Y. Suzen and G. Huang, "Simulations of Flow Separation Control using Plasma Actuators," AIAA paper 2006-877, 2006.
  8. D. Guillaume and R. Francois, "Numerical Modeling of Dielectric Barrier Discharge Based Plasma Actuators for Flow Control the COPAIER/CEDRE Example," Aerospace Lab, Issue 10, AL10-05, ONERA, 2015.
  9. M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, and M. Cazalens, "Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control," Experiments in Fluids, vol. 43, no. 6, pp. 917-928, Dec. 2007. https://doi.org/10.1007/s00348-007-0362-7
  10. A. R. Hoskinson, N. Hershkowitz, and D. E. Ashpis, "Force measurements of single and double barrier DBD plasma actuators in quiescent air," Journal of Physics D: Applield Physics, vol. 41, no. 24, p. 245209, 2008. https://doi.org/10.1088/0022-3727/41/24/245209