• 제목/요약/키워드: Mechanics' Institute

검색결과 2,811건 처리시간 0.032초

Dynamic sensitivity analysis and optimum design of aerospace structures

  • Gu, Yuanxian;Kang, Zhan;Guan, Zhenqun;Jia, Zhiwen
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.31-40
    • /
    • 1998
  • The research and applications of numerical methods of design optimization on structural dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimization of aerospace structures, particularly those composed of composite laminate and sandwich plates. The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimization solution approaches are presented. The numerical examples of sensitivity analysis and dynamic structural design optimization are given to demonstrate the effectiveness of the numerical methods.

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

파괴역학에 근거한 철근콘크리트 보의 휨 파괴거동 (Flexural Fracture Behavior of Reinforced Concrete Beam Based on Fracture Mechanics Approach)

  • 어석홍;최덕진;홍기호;김희성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.149-154
    • /
    • 2002
  • An analytical fracture mechanics approach was used to investigate the fracture behavior of reinforced concrete beams. By use of this approach based on fracture mechanics concepts, the crack width and length as well as the strength and cracking stability of reinforced concrete beams were investigated. The results obtained from the analytical studies were also discussed in terms of the minimum reinforcement ratio and crack width specified in design code provisions. The analytical approach based on fracture mechanics concepts are very useful to predict the fracture behavior of reinforced concrete beams.

  • PDF

Development of an Ultra-Slim System in Package (SiP)

  • Gao, Shan;Hong, Ju-Pyo;Kim, Jin-Su;Yoo, Do-Jae;Jeong, Tae-Sung;Choi, Seog-Moon;Yi, Sung
    • 마이크로전자및패키징학회지
    • /
    • 제15권1호
    • /
    • pp.7-18
    • /
    • 2008
  • This paper reviews the current development of an ultra-slim SiP for Radio Frequency (RF) application, in which three flip chips, additional passive components and Surface Acoustic Wave (SAW) filters are integrated side-by-side. A systematic investigation is carried out for the design optimization, process and reliability improvement of the package, which comprises several aspects: a design study based on the 3D thermo-mechanical finite element analysis of the packaging, the determination of stress, warpage distribution, critical failure zones, and the figuration of the effects of material properties, process conditions on the reliability of package. The optimized material sets for manufacturing process were determined which can reduce the number of testing samples from 75 to 2. In addition the molded underfilling (MUF) process is proposed which not only saves one manufacturing process, but also improves the thermo-mechanical performance of the package compared with conventional epoxy underfilling process. In the end, JEDEC's moisture sensitivity test, thermal cycle test and pressure cooker tests have also been carried out for reliability evaluation. The test results show that the optimized ultra-slim SiP has a good reliability performance.

  • PDF

An Automatic Corona-discharge Detection System for Railways Based on Solar-blind Ultraviolet Detection

  • Li, Jiaqi;Zhou, Yue;Yi, Xiangyu;Zhang, Mingchao;Chen, Xue;Cui, Muhan;Yan, Feng
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.196-202
    • /
    • 2017
  • Corona discharge is always a sign of failure processes of high-voltage electrical apparatus, including those utilized in electric railway systems. Solar-blind ultraviolet (UV) cameras are effective tools for corona inspection. In this work, we present an automatic railway corona-discharge detection system based on solar-blind ultraviolet detection. The UV camera, mounted on top of a train, inspects the electrical apparatus, including transmission lines and insulators, along the railway during fast cruising of the train. An algorithm based on the Hough transform is proposed for distinguishing the emitting objects (corona discharge) from the noise. The detection system can report the suspected corona discharge in real time during fast cruises. An experiment was carried out during a routine inspection of railway apparatus in Xinjiang Province, China. Several corona-discharge points were found along the railway. The false-alarm rate was controlled to less than one time per hour during this inspection.

Parameterized Modeling of Spatially Varying PSF for Lens Aberration and Defocus

  • Wang, Chao;Chen, Juan;Jia, Hongguang;Shi, Baosong;Zhu, Ruifei;Wei, Qun;Yu, Linyao;Ge, Mingda
    • Journal of the Optical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.136-143
    • /
    • 2015
  • Image deblurring by a deconvolution method requires accurate knowledge of the blur kernel. Existing point spread function (PSF) models in the literature corresponding to lens aberrations and defocus are either parameterized and spatially invariant or spatially varying but discretely defined. In this paper, a parameterized model is developed and presented for a PSF which is spatially varying due to lens aberrations and defocus in an imaging system. The model is established from the Seidel third-order aberration coefficient and the Hu moment. A skew normal Gauss model is selected for parameterized PSF geometry structure. The accuracy of the model is demonstrated with simulations and measurements for a defocused infrared camera and a single spherical lens digital camera. Compared with optical software Code V, the visual results of two optical systems validate our analysis and proposed method in size, shape and direction. Quantitative evaluation results reveal the excellent accuracy of the blur kernel model.

A framework for geometrically non-linear gradient extended crystal plasticity coupled to heat conduction and damage

  • Ekh, Magnus;Bargmann, Swantje
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권2호
    • /
    • pp.171-188
    • /
    • 2016
  • Gradient enhanced theories of crystal plasticity enjoy great research interest. The focus of this work is on thermodynamically consistent modeling of grain size dependent hardening effects. In this contribution, we develop a model framework for damage coupled to gradient enhanced crystal thermoplasticity. The damage initiation is directly linked to the accumulated plastic slip. The theoretical setting is that of finite strains. Numerical results on single-crystalline metal showing the development of damage conclude the paper.