• 제목/요약/키워드: Mechanical interaction

검색결과 1,848건 처리시간 0.026초

Study on cognitive load of OM interface and eye movement experiment for nuclear power system

  • Zhang, Jingling;Su, Daizhong;Zhuang, Yan;QIU, Furong
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.78-86
    • /
    • 2020
  • The operation and monitoring (OM) interface is the digital medium between nuclear power system and operators. The cognitive load of OM interface has an important effect on the operation errors made by operator during OM task between operator and computer. The cognitive load model of OM interface is constructed for analysing the composition and influencing factors of OM interface cognitive load. And to study the coping strategies and methods for cognitive load of nuclear power system. An experiment method based on eye movement is proposed to measure the cognitive load of OM interface. Experiment case is carried out with 20 subjects and typical OM interface of a nuclear power system simulator. The OM interface is optimized based on the experiment results. And the results comparison between the original OM interface and the optimized OM interface shows that the cognitive load model and proposed method is valuable contributions in reducing the cognitive load and improving the interaction efficiency of OM tasks.

압전 젯팅 디스펜서의 작동 변수에 대한 실험적 분석 (Experimental Analysis of Operating Parameters for Piezoelectric Jetting Dispenser)

  • 손정우;홍승민;김기우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.685-691
    • /
    • 2015
  • In this work, to identify effective parameter for performance of piezoelectric jetting dispenser, experimental investigation is carried out based on design of experiment. After preparing jetting dispenser using two stack-type piezoelectric actuators, basic working principle of the jetting dispenser is described. Eight operating conditions are chose as main factors and it is assumed that each factor has two levels. To reduce number of experiments for performance evaluation, the experimental sets are designed based on factional factorial design method. Experimental setup is established and the weight of single dot is measured by using precision scale. The main and interaction effects of factors are analyzed using commercial statistical program and optimal operating condition for small amount and small variation of weight of dispensed single dot are determined.

문서의 의미론적 분석에 기반한 키워드 추출에 관한 연구 (A Study on Keywords Extraction based on Semantic Analysis of Document)

  • 송민규;배일주;이수홍;박지형
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 추계학술대회
    • /
    • pp.586-591
    • /
    • 2007
  • 지식 관리 시스템, 정보 검색 시스템, 그리고 전자 도서관 시스템 등의 문서를 다루는 시스템에서는 문서의 구조화 및 문서의 저장이 필요하다. 문서에 담겨있는 정보를 추출하기 위해 가장 우선시되어야 하는 것은 키워드의 선별이다. 기존 연구에서 가장 널리 사용된 알고리즘은 단어의 사용 빈도를 체크하는 TF(Term Frequency)와 IDF(Inverted Document Frequency)를 활용하는 TF-IDF 방법이다. 그러나 TF-IDF 방법은 문서의 의미를 반영하지 못하는 한계가 존재한다. 이를 보완하기 위하여 본 연구에서는 세 가지 방법을 활용한다. 첫 번째는 문헌 속에서의 단어의 위치 및 서론, 결론 등의 특정 부분에 사용된 단어의 활용도를 체크하는 문헌구조적 기법이고, 두 번째는 강조 표현, 비교 표현 등의 특정 사용 문구를 통제 어휘로 지정하여 활용하는 방법이다. 마지막으로 어휘의 사전적 의미를 분석하여 이를 메타데이터로 활용하는 방법인 언어학적 기법이 해당된다. 이를 통하여 키워드 추출 과정에서 문서의 의미 분석도 수행하여 키워드 추출의 효율을 높일 수 있다.

  • PDF

터그보트와 댐퍼 협조제어를 통한 선박접안시스템 설계에 관한 연구 (A Ship Berthing System Design by Cooperating with Tugboats and Dampers)

  • 안민트란;지상원;김영복
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권3호
    • /
    • pp.7-13
    • /
    • 2014
  • Everyday about 90% of cargos are delivered by ships, and thousands of vessels enter and depart the international container harbors such as Shanghai, Singapore, Hong Kong, Busan, Rotterdam, etc. Maneuvering at harbor is known as the most sophisticated and difficult procedure, because the effectiveness of actuators during low speed berthing is reduced. In this paper, a new berthing method is discussed. Tugboats are combined with damper systems to ensure safe berthing. A mathematical model describing the interaction between unactuated ship, tugboats and damper systems is presented. An optimal controller is designed to maneuver the ship without oscillation and overshoot. MCL (Marine Cybernetics Lab) model ship is used to evaluate the efficiency of the proposed approach through MatLab simulation.

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.

CFD validation and grid sensitivity studies of full scale ship self propulsion

  • Jasak, Hrvoje;Vukcevic, Vuko;Gatin, Inno;Lalovic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 2019
  • A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number $F_n=0:182$ and a car carrier at $F_n=0:254$. For the general cargo carrier, the propeller rotation rate is fixed and the achieved speed and trim are compared to sea trials, while for the car carrier, the propeller rotation rate is adjusted to achieve the 80% MCR. In addition, three grids are used for each ship in order to assess the grid refinement sensitivity. All simulations are performed using the Naval Hydro pack based on foam-extend, a community driven fork of the OpenFOAM software. The results demonstrate the possibility of using high-fidelity numerical methods to directly calculate ship scale flow characteristics, including the effects of free surface, non-linearity, turbulence and the interaction between propeller, hull and the flow field.

Visual Tracking Using Improved Multiple Instance Learning with Co-training Framework for Moving Robot

  • Zhou, Zhiyu;Wang, Junjie;Wang, Yaming;Zhu, Zefei;Du, Jiayou;Liu, Xiangqi;Quan, Jiaxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5496-5521
    • /
    • 2018
  • Object detection and tracking is the basic capability of mobile robots to achieve natural human-robot interaction. In this paper, an object tracking system of mobile robot is designed and validated using improved multiple instance learning algorithm. The improved multiple instance learning algorithm which prevents model drift significantly. Secondly, in order to improve the capability of classifiers, an active sample selection strategy is proposed by optimizing a bag Fisher information function instead of the bag likelihood function, which dynamically chooses most discriminative samples for classifier training. Furthermore, we integrate the co-training criterion into algorithm to update the appearance model accurately and avoid error accumulation. Finally, we evaluate our system on challenging sequences and an indoor environment in a laboratory. And the experiment results demonstrate that the proposed methods can stably and robustly track moving object.

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.

액주를 이용한 충격파 완화에 대한 수치해석 (Computational Analysis of Mitigation of Shock wave using Water Column)

  • 라자세칼;김태호;김희동
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.49-57
    • /
    • 2022
  • The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.

Numerical simulations of hydrodynamic loads and structural responses of a Pre-Swirl Stator

  • Bakica, Andro;Vladimir, Nikola;Jasak, Hrvoje;Kim, Eun Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.804-816
    • /
    • 2021
  • This paper investigates the effect of different flow models on the Pre-Swirl-Stator structural response from the perspective of a non-existing unified design procedure. Due to viscous effects near the propeller plane, the hydrodynamic solution is calculated by Computational Fluid Dynamics (CFD). Three different models are analysed: without the propeller, with the actuator disk and with the propeller. The main intention of this paper is to clarify the effects of the propeller model on the structural stresses in calm-water and waves which include the ship motion. CFD simulations are performed by means of OpenFOAM, while the structural response is calculated by means of the Finite Element Method (FEM) solver NASTRAN. Calm-water results have shown the inclusion of the propeller necessary from the design perspective, while the wave simulations have shown negligible propeller influence on the resulting stresses arising from the ship motions.