Acknowledgement
This research was supported by the Croatian Science Foundation under the project Green Modular Passenger Vessel for Mediterranean (GRiMM), (Project No. UIP-2017-05-1253). Also, the funding within the international collaborative project Global Core Research Center for Ships and Offshore Plants (GCRC-SOP, No. 2011-0030669), established by the Republic of Korea Government (MSIP) through the National Research Foundation of South Korea (NRF) is greatly acknowledged.
References
- Bakica, A., Gatin, I., Vukcevic, V., Jasak, H., Vladimir, N., 2019. Accurate assessment of ship-propulsion characteristics using CFD. Ocean Eng 175, 149-162. https://doi.org/10.1016/j.oceaneng.2018.12.043
- Bakica, A., Malenica, S., Vladimir, N., 2020a. Hydro-structure coupling of CFD and FEM - Quasi-static approach. Ocean Eng 217.
- Bakica, A., Vladimir, N., Gatin, I., Jasak, H., 2020b. CFD Simulation of Loadings on Circular Duct in Calm Water and Waves. Ships and Offshore Structures. https://doi.org/10.1080/17445302.2020.1730082 (in press).
- Beaudoin, M., Jasak, H., 2008. Development of a generalized grid interface for turbomachinery simulations with OpenFOAM. In: Open Source CFD International Conference, pp. 1-11. URL papers3://publication/uuid/81CCD00D-DF48-4595-B591-C577955CEA06.
- Carlton, J., 2012. Marine Propellers and Propulsion, third ed.
- Carrica, P.M., Fu, H., Stern, F., 2011. Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Appl. Ocean Res. 33, 309-320. https://doi.org/10.1016/j.apor.2011.07.003
- CFD Workshop Website, 2010. Gothenburg 2010: a Workshop on CFD in ship hydrodynamics. \\url. http://www.insean.cnr.it/sites/default/files/gothenburg2010/index.html.
- Cvijetic, G., Gatin, I., Vukcevic, V., Jasak, H., 2018. Harmonic balance developments in OpenFOAM. Computers and Fluid 172, 632-643. https://doi.org/10.1016/j.compfluid.2018.02.023
- Dang, J., Dong, G., Chen, H., 2012. An exploratory study on the working principles of energy saving devices (ESDs): PIV, CFD investigations and ESD design guidelines. In: International Conference on Ocean, Offshore and Arctic Engineering, p. 25. URL. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/OMAE2012-83053.
- Furcas, F., Gaggero, S., 2021. Pre-swirl stators design using a coupled BEM-RANSE approach. Ocean Eng 222 (January), 108579. https://doi.org/10.1016/j.oceaneng.2021.108579. URL.
- Gaggero, S., Villa, D., Viviani, M., 2017. An extensive analysis of numerical ship self-propulsion prediction via a coupled BEM/RANS approach. Appl. Ocean Res. 66, 55-78. https://doi.org/10.1016/j.apor.2017.05.005. URL.
- Gatin, I., Vukcevic, V., Jasak, H., Rusche, H., 2017. Enhanced coupling of solid body motion and fluid flow in finite volume framework. Ocean Eng 143 (December 2016), 295-304. https://doi.org/10.1016/j.oceaneng.2017.08.009
- Gokce, M.K., Kinaci, O.K., Alkan, A.D., 2019. Self-propulsion estimations for a bulk carrier. Ships Offshore Struct. 14 (7), 656-663. https://doi.org/10.1080/17445302.2018.1544108. URL.
- Huang, J., Carrica, P.M., Stern, F., 2007. Coupled ghost fluid/twoephase level set method for curvilinear bodyefitted grids. Int. J. Numer. Methods Fluid. 44, 867-897. https://doi.org/10.1002/fld.1499
- Jasak, H., Uroic, T., 2020. Practical computational fluid dynamics with the finite volume method. In: Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. http://link.springer.com/10.1007/978-3-030-37518-8.
- Jasak, H., Vukcevic, V., Gatin, I., 2015. Numerical simulation of wave loads on static Offshore structures. In: CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering, pp. 95-105.
- Jasak, H., Vukcevic, V., Gatin, I., Lalovic, I., 2019. CFD validation and grid sensitivity studies of full scale ship self propulsion. Int. J. Naval Architect. Ocean Eng. 11 (1), 33-43. https://doi.org/10.1016/j.ijnaoe.2017.12.004
- Ju, H.B., Jang, B.S., Lee, D.B., Kim, H.J., Park, C.K., 2018. A simplified structural safety assessment of a fin-typed energy saving devices subjected to nonlinear hydrodynamic load. Ocean Eng 149 (June 2017), 245-259. https://doi.org/10.1016/j.oceaneng.2017.12.022. URL.
- Kim, J.H., Choi, J.E., Choi, B.J., Chung, S.H., 2014. Twisted rudder for reducing fuel-oil consumption. Int. J. Naval Architect. Ocean Eng. 6 (3), 715-722. https://doi.org/10.2478/IJNAOE-2013-0207. URL.
- Kim, J.H., Choi, J.E., Choi, B.J., Chung, S.H., Seo, H.W., 2015. Development of Energy-Saving devices for a full Slow-Speed ship through improving propulsion performance. Int. J. Naval Architect. Ocean Eng. 7 (2), 390-398. https://doi.org/10.1515/ijnaoe-2015-0027. URL.
- Lee, D.B., Jang, B.S., Kim, H.J., 2016. Development of procedure for structural safety assessment of energy saving device subjected to nonlinear hydrodynamic load. Ocean Eng 116, 165-183. https://doi.org/10.1016/j.oceaneng.2016.02.038. URL.
- Lim, S.S., Kim, T.W., Lee, D.M., Kang, C.G., Kim, S.Y., 2014. Parametric study of propeller boss cap fins for container ships. Int. J. Naval Architect. Ocean Eng. 6 (2), 187-205. https://doi.org/10.2478/IJNAOE-2013-0172. URL.
- Min, K.-S., Chang, B.-J., Seo, H.-W., 2009. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method. Int. J. Naval Architect. Ocean Eng. 1 (1), 29-38. https://doi.org/10.3744/JNAOE.2009.1.1.029
- Nowruzi, H., Najafi, A., 2019. An experimental and CFD study on the effects of different pre-swirl ducts on propulsion performance of series 60 ship. Ocean Eng 173 (424), 491-509. https://doi.org/10.1016/j.oceaneng.2019.01.007. URL.
- Paboeuf, S., Cassez, A., 2017. ESD structural issue - UPstream device. Int. Shipbuild. Prog. 63 (3-4), 291-314. https://doi.org/10.3233/ISP-170135
- Paik, K.J., Hwang, S., Jung, J., Lee, T., Lee, Y.Y., Ahn, H., Van, S.H., 2015. Investigation on the wake evolution of Contra-rotating propeller using RANS computation and SPIV measurement. Int. J. Naval Architect. Ocean Eng. 7 (3), 595-609. https://doi.org/10.1515/ijnaoe-2015-0042. URL.
- Park, S., Oh, G., Hyung Rhee, S., Koo, B.Y., Lee, H., 2015. Full scale wake prediction of an energy saving device by using computational fluid dynamics. Ocean Eng 101, 254-263. https://doi.org/10.1016/j.oceaneng.2015.04.005. URL.
- Popovac, M., Hanjalic, K., 2007. Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow, Turbul. Combust. 78 (2), 177-202. https://doi.org/10.1007/s10494-006-9067-x
- Prins, H.J., Flikkema, M.B., Schuiling, B., Xing-Kaeding, Y., Voermans, A.A., Muller, M., Coache, S., Hasselaar, T.W., Paboeuf, S., 2016. Green retrofitting through optimisation of hull-propulsion interaction - GRIP. Transport. Res. Procedia 14, 1591-1600. https://doi.org/10.1016/j.trpro.2016.05.124 (0).
- Sakamoto, N., Kume, K., Kawanami, Y., Kamiirisa, H., Mokuo, K., Tamashima, M., 2019. Evaluation of hydrodynamic performance of pre-swirl and post-swirl ESDs for merchant ships by numerical towing tank procedure. Ocean Eng 178 (February), 104-133. https://doi.org/10.1016/j.oceaneng.2019.02.067. URL.
- Shin, H.J., Lee, J.S., Lee, K.H., Han, M.R., Hur, E.B., Shin, S.C., 2013. Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC. Int. J. Naval Architect. Ocean Eng. 5 (3), 414-430. https://doi.org/10.2478/IJNAOE-2013-0143. URL.
- Shin, Y.J., Kim, M.C., Lee, J.H., Song, M.S., 2018. A numerical and experimental study on the performance of a twisted rudder with wavy configuration. Int. J. Naval Architect. Ocean Eng. 1-12. https://doi.org/10.1016/j.ijnaoe.2018.02.014. URL.
- Siemens, 2014. NX NASTRAN User's Guide.
- Sun, Y., Beckermann, C., 2007. Sharp interface tracking using the phase-field equation. J. Comput. Phys. 220, 626-653. https://doi.org/10.1016/j.jcp.2006.05.025
- Tsou, W.H., Guan, P.C., Chang, W.H., Chen, C.J., 2019. Structural design and strength estimation of energy saving Y-fin by using finite element method. In: Proceedings of the 14th International Symposium PRADS 2019, vol. 2, pp. 209-231.
- Vukcevic, V., 2016. Numerical Modelling of Coupled Potential and Viscous Flow for Marine Applications. Ph.D. thesis. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
- Vukcevic, V., Jasak, H., Malenica, S., 2016a. Decomposition model for naval hydrodynamic applications, Part I: computational method. Ocean Eng. 121, 37-46. https://doi.org/10.1016/j.oceaneng.2016.05.022
- Vukcevic, V., Jasak, H., Malenica, S., 2016b. Decomposition model for naval hydrodynamic applications, Part II: verification and validation. Ocean Eng. 121, 76-88. https://doi.org/10.1016/j.oceaneng.2016.05.021
- Wang, J., Wan, D., 2020. CFD study of ship stopping maneuver by overset grid technique. Ocean Eng 197 (May 2019), 106895. https://doi.org/10.1016/j.oceaneng.2019.106895. URL.
- Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object oriented techniques. Comput. Phys. 12, 620-631. https://doi.org/10.1063/1.168744