• Title/Summary/Keyword: Mechanical interaction

Search Result 1,841, Processing Time 0.028 seconds

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Computational Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-204
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark JPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

Application of Design of Experiments and Numerical Analysis to Optimal Design for Injection Molding Processes of Electrical Parts (실험계획법과 수치해석을 연계한 정밀 전자부품 사출성형 공정의 최적설계)

  • Ahn, Jong-Ho;Choi, Sang-Ryun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1348-1356
    • /
    • 2002
  • The present work concerns the optimal design for injection molding processes by using the design of experiments (DOE) and numerical analysis. The DOE approaches is planned to be able to consider two-way interaction, and have been applied progressively for both mold design and process design. Numerical analyses have been carried out as a design of experiments for mold parameters such as runner specifications and cooling channel configurations. In order to determine optimal process parameters, experiments have been performed for various process conditions with the DOE scheduling. As a result, the quality and productivity of the product have been improved, and the proposed approach can be successfully reflected on the industrial injection molding process of precision electronics parts.

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

Fatigue Life Predictions for Variable Load Histories (변동하중하의 피로수명예측)

  • 하재선;송지호;이시중
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.760-780
    • /
    • 1988
  • Using the fatigue test results obtained in the SAE Fatigue Cumulative Damage Test Program, prediction methods of fatigue crack initiation life for notched members undergoing random loaming histories were discussed in detail. Conventional fatigue life predictions based on so-called modified Miner's rule were found to be apt to give nonconservative estimate, due to lack of sufficient consideration for stress-interaction effect. A modified .epsilon.-N curve concept was proposed to account for the stress-interaction effect. The predicted fatigue life based on the modified .epsilon.-N curve concept was in good agreement with the experimental results of SAE Test Program. Specifically for the cases when fatigue data was not available at hand, was proposed a procedure to give conservative estimate of fatigue life.

Mixed convection from two isothermal, vertical, parallel plates (등온 수직 평판에서의 혼합대류 열전달)

  • 박문길;이재신;양성환;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1645-1651
    • /
    • 1990
  • The steady laminar mixed convection from two finite vertical parallel plates has been studied by numerical procedure. The governing equations are solved by the finite difference method and point successive over relaxation scheme at R3=100-1000, Gr=0-10$^{6}$ , Pr=0.71 and dimensionless plate spacing b/$\ell$=0.05-0.1. The plume interaction caused by the thermal interference of two plates is observed. As Reynolds numbers are increased, optimum plate spacings are moved to narrow spacings at the same Grashof number, and as Grashof numbers are increased, to wide spacings at the same Reynolds number.

Effect of Flame Interaction on the NO Emission (다수 상호작용 화염의 공해배출물 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.730-736
    • /
    • 2005
  • It has been reported that the interacting multiple jet flames of propane fuel are not extinguished even at the choking velocity at the nozzle exit if eight small nozzles are arranged along the imaginary circle of $40{\sim}72$ times the diameter of single nozzle. In this research, experiments were conducted to know the NO and CO emission characteristics of the interacting flames. Measurements along the centerline of the flame revealed that decrease in CO concentration was followed by the NO decrease and $O_2$ increase. It was found that interacting flame emitted less NO than that of similar area single jet flame. Also, NO emission of partially premixed interacting flame was decreased up to $17\%$ of that of non-premixed multiple jet flame. Though the mechanism of the NO reduction was not clear from this experiment, it's been shown that partially premixed multiple jet flames could be used to achieve clean and highly stable combustion.

Parametric Study on Shock-Vortex Interaction (충격파-와동 간섭의 파라메터 연구)

  • Chang Keun-Shik;Chang Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.921-926
    • /
    • 2005
  • In the idealized model problem of the interaction between a planar travelling shock and a symmetric vortex, the physics of shock distortion and quadrupole sound generation are well known to many researchers. However, the authors have distinguished the weak waves reflected and transmitted by the complicated photograph images obtained from a shock tube experiment. In this paper, we introduces a parametric study based on Navier-Stokes simulation and Rankin vortex model to see the difference of shock deformation shapes. Four combination of the strength of shock and vortex are respectively selected from a parameter plane of shock and vortex strength extended to the strong vortex region. The result shows clearly discernable wave morphology for the main parameters, which is not yet explicitly mentioned by other researchers.

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

FSI Analysis of Piston Tilting for Pneumatic Actuator (공압 액추에이터의 피스톤 틸팅에 관한 FSI 해석)

  • Jang, Sung-Cheol;Jung, Won Taick;Park, Woon-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.144-153
    • /
    • 2016
  • In this research performed on a pneumatic actuator, the air flow entering and exiting the cylinder, and the motion and deformation characteristics of the piston during operation of the actuator, were predicted. This was carried out by utilizing an FSI(Fluid-Structural Interaction) analysis technique that incorporates principles in computational fluid dynamics and structural stress analysis, and potential performance degradation factors were examined. Analysis results indicated that performance improvements could be made through design modifications. These include adding an inlet and outlet on the upper and lower sections of the cylinder in the conventional model, and increasing the number of sites for piston guide bars from three to four.