• 제목/요약/키워드: Mechanical impact

Search Result 2,846, Processing Time 0.033 seconds

Temperature rise due to impact (충격열에 의한 온도상승)

  • 이병호
    • Journal of the KSME
    • /
    • v.16 no.3
    • /
    • pp.271-276
    • /
    • 1976
  • A theory has been developed for impact heating as well as thermodynamics of impact. The result is very simple and convenient for engineering applications : T=$T(\frac{{V_0}}{V})^{\gamma}$, $where T_0$ and T are the temperatures before and after the impact, $V_0$/ and V the volumes before and after the impact, and $\gamma$ the Gruneisen constant, given in a table in this paper.

  • PDF

Crashworthy behaviour of rigid polyurethane foam under constant impact energy (동일 충격 에너지 조건에서의 발포 폴리우레탄의 충격특성에 관한 연구)

  • Munshi, Mahbubul Basit;Jeong, Kwang-Young;Choi, Young-Jong;Cheon, Seong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.43-47
    • /
    • 2007
  • Based on experimental impact testing data, due to changing of velocity and mass of the impactor simultaneously under constant impact energy, crashworthiness of polyurethane foam has been observed. Dynamic tests were carried out in an instrumented impact-testing machine. Also, modified Sherwood-Frost model was proposed to investigate the crashworthy behaviour of rigid polyurethane foam under the condition of constant impact energy.

  • PDF

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Development of a PVDF sensor for detecting over-load and impact on large-scale mechanical structures (대형 기계 구조물의 과부하 및 충격 측정을 위한 PVDF 센서 개발)

  • Kang, Dong-Bae;Ahn, Jung-Hwan;Kim, Gang-Yeon;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6399-6405
    • /
    • 2014
  • An external overload or impact is an important factor affecting the safety of large-scale structures. The proposal of this paper is the development of a system for detecting overload and impulse using a single PVDF film sensor. In large-scale structures, the load causes the structure to be deformed and the impulse generates vibration on the structure. Generally, low frequency deformation or bending of a structure is measured with a strain gauge and the high frequency vibration is detected by an accelerometer. On the other hand, a single sensor that can detect both deformation and vibration has not been developed. In this study, the development of a detection system integrated with a polyvinylidene fluoride (PVDF) film sensor, amplifier, and software was attempted to monitor deformation and impact through a single sensor. The system was verified by the possibility of detecting overload and impulse, and the two filtered signals of the PVDF were compared with a conventional strain gauge and an accelerometer.

Fatigue Characteristic of High Impact Polystyrene(HR-1360) Materials (HIPS(HR-1360) 재료의 피로 특성 평가)

  • Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.763-769
    • /
    • 2010
  • In recent times, there has been considerable interest in HIPS (High Impact Polystyrene) materials for their use in construction of office equipments, home electronics, housing for electronics appliances, packing containers, etc. However, these materials suffer from problems caused by fatigue fracture. Further, their strength is substantially affected by environmental conditions. Therefore, in this study, the effect of temperature was analyzed by performing a tensile test and a fatigue test. It was observed that the yield strength, the ultimate strength, and the fatigue life decreased relatively with an increase in temperature. Further, an S-N curve can be predicted by using the results of the tensile test and a micro-Vickers hardness test.

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

Prediction of Impact Life Time in Solder Balls of the Board Level Flip Chips by Drop Simulations (낙하해석을 통한 보드 레벨 플립칩에서의 솔더볼 충격수명에 관한 연구)

  • Jang, Chong Min;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Recently much research are has been done into the compositions of lead-free solders. As a result, there has been a rapid increase in the number of new compositions. In the past, the properties of these new compositions were determined and verified through drop-impact tests. However, these drop tests were expensive and it took a long time to obtain a result. The main goal of this study was to establish an analytical method capable of predicting the impact life-time of a new solder composition for board-level flip chips though the application of drop simulations using LS-DYNA. Based on the reaction load obtain with LS-DYNA, the drop-impact fracture cycles were predicted. The study was performed using a Sn-3.0Ag-0.5Cu solder (305 composition). To verify the reliability of the proposed analytical method, the results of the drop-impact tests and life-time analysis were compared, and were found to be in good agreement. Thus, the new analytical method was shown to be very useful and effective.

Estimation of Subjective Evaluations for Impact Sound and Analysis of the Effects for Parts of a Car (자동차 임팩트 소음에 대한 주관적 평가 및 차량 개발에 응용)

  • Park, Sang-Won;Lee, Sang-Kwon;Bae, Byung-Kuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • Impact noise is induced in a car when it is driven on a harsh road or over some bumps. This noise occurs with the very high level of sound, which affects passengers in some way or other. Although it is impossible to clearly remove such noise, it is necessary to research an improvement in sound quality for impact noise. A new sound metric for impact sound is presented. This metric is verified by comparison between mean subjective ratings and several sound metrics. In this paper, more objective attributes are considered, which the attributes are expressing the level and modulation of sound. Three sound metrics are employed to get impact sound indexes for each course by the method of multiple linear regressions. The indexes are verified by considering the correlation between the estimated values from the multiple linear regressions and the mean subjective ratings by evaluators. Also, the subjective ratings on the indexes are estimated for the case in which some parts of suspension system are changed. The estimated ratings represent more reasonable or acceptable ratings. Thus, such indexes can be used for modification of the parts of suspension system under considering a good sound quality.

Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train

  • Yan, Qixiang;Li, Binjia;Deng, Zhixin;Li, Bin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.741-750
    • /
    • 2018
  • The aim of this study was to investigate the mechanical responses of a high-speed railway shield tunnel subjected to impact by a derailed train, with emphasis on the protective effect of the secondary lining. To do so, the extended finite element method was used to develop two numerical models of a shield tunnel including joints and joint bolts, one with a cast-in-situ concrete secondary lining and one without such a lining. The dynamic responses of these models upon impact were analyzed, with particular focus on the distribution and propagation of cracks in the lining structures and the mechanical responses of the joint bolts. The numerical results showed that placing a secondary lining significantly constricted the development of cracking in the segmental lining upon the impact load caused by a derailed train, reduced the internal forces on the joint bolts, and enhanced the safety of the segmental lining structure. The outcomes of this study can provide a numerical reference for optimizing the design of shield tunnels under accidental impact loading conditions.

A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique (아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교)

  • 윤석영;이윤복;김광호
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.