• Title/Summary/Keyword: Mechanical Structure Design

Search Result 2,227, Processing Time 0.024 seconds

Optimal reinforcement design of structures under the buckling load using the homogenization design method

  • Min, Seungjae;Kikuchi, Noboru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.565-576
    • /
    • 1997
  • The material-based homogenization design method generates arbitrary topologies of initial structural design as well as reinforcement structural design by controlling the amount of material available. However, if a small volume constraint is specified in the design of Lightweight structures, thin and slender structures are usually obtained. For these structures stability becomes one of the most important requirements. Thus, to prevent overall buckling (that is, to increase stability), the objective of the design is to maximize the buckling load of a structure. In this paper, the buckling analysis is restricted to the linear buckling behavior of a structure. The global stability requirement is defined as a stiffness constraint, and determined by solving the eigenvalue problem. The optimality conditions to update the design variables are derived based on the sequential convex approximation method and the dual method. Illustrated examples are presented to validate the feasibility of this method in the design of structures.

An Anthropometric Product Design Approach Using Design Structure Matrix (DSM): Application to Computer Workstation Design (Design Structure Matrix를 활용한 인체측정학적 제품설계 방법: 컴퓨터 워크스테이션 설계 적용)

  • Jung, Ki-Hyo;Kwon, O-Chae;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.111-115
    • /
    • 2007
  • Design equations for anthropometric product design are developed by considering the geometrical relationships of design dimensions and anthropometric dimensions. The present study applied the design structure matrix (DSM) method to the development of design equations for a computer workstation, and compared design values from the design equations with corresponding design values of ergonomic recommendations and existing products. The relationships between design dimensions (e.g., legroom and worktable) were analyzed by a DSM, and then the application order of design equations (e.g., seatpan, backrest, armrest, legroom, and worktable in descending order) was determined. Next, design equations were developed by analyzing the geometric relationships between computer workstation design dimensions and anthropometric dimensions. Finally, design values for a computer workstation were determined by considering a standard posture defined and representative human models (5th, 50th, 95th %ile). The design values calculated using the design equations were similar with those of ergonomic recommendations found in literature and two commercial products measured in the study; however, some design values (e.g., seatpan height) were different due to discrepancy in standard posture. The DSM method would be utilized to systematically analyze the relationships between design dimensions for anthropometric product design.

Trajectory control of direct drive robot using two-degrees-of-freedom compensator

  • Shin, Jeong-Ho;Fujiune, Kenji;Suzuki, Tatsuya;Okuma, Shigeru;Yamada, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.422-427
    • /
    • 1994
  • In this paper, we propose a new design approach of a two-degrees-of-freedom compensator which assures the robust stability. First of all, we clarify the internal structure of the generalized two-degrees-of-freedom compensator. By adopting this structure, we can make a bridge between the generalized controller and the disturbance observer based controller, Secondly, based on the clarified structure we derive a robust stability condition, and propose a design algorithm of free parameter taking the condition into account. The proposed design algorithm is easy to implement and, as a result, we obtain lower order free parameter then that of the conventional design algorithm.. Thirdly, we show by adopting an appropriate coprime factorization that the clarified structure can also be regarded as an extended version of the conventional PID compensator. Finally, we apply the proposed algorithm to a three-degrees-of freedom direct drive robot, and show some experimental results to verify the effectiveness of the proposed algorithm.

  • PDF

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.

Optimal design of a portable structure under impact loading (충격부하를 받는 휴대용 구조물의 최적설계)

  • Oh, Deog-Su;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.804-809
    • /
    • 2001
  • Optimal design of a portable structure which supports impact loading is presented. The structure requires impact loading capability, stiffness and minimum weight for portability. A collapsible tripod structure with locking mechanism is suggested. Taguchi method has been used to identify the most important design variables and the initial design. Subsequent optimization yields additional weight reduction under stress and displacement constrains.

  • PDF

유연성과 강성을 고려한 최적구조설계

  • Min, Seungjae;Nishiwaki, Shinji;Kikuchi, Noboru
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1432-1440
    • /
    • 1997
  • The flexibility as well as the stiffness is required to perform mechanical function of a structure such as compliant mechanisms, which can be applied to MEMS(Micro-Electro-Mechanical Systems), flexible manufacturing devices, and design for no assembly. In this paper, the optimal design problem to achieve both structural flexibility and stiffness is formulated using multi-objective function, and the optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanisms are presented to validate the design method.

A method of optimum design based on reliability for antenna structures

  • Chen, Jianjun;Wang, Fanglin;Sun, Huaian;Zhang, Chijiang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 1999
  • A method of optimum design based on reliability for antenna structures is presented in this paper. By constructing the equivalent event, the formula is derived for calculating the reliability of reflector accuracy of antenna under the action of random wind load. The optimal model is developed, in which the cross sectional areas of member are treated as design variables, the structure weight as objective function, the reliability of reflector accuracy and the strength or stability of structural elements as constraints. The improved accelerated convergence gradient algorithm developed by the author is used. The design results show that the method in this paper is feasible and effective.

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Application of the Durability Reinforcement Technique on the Frame Structure (프레임 구조물에 대한 선형 내구 보강 기법의 적용)

  • Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1341-1346
    • /
    • 2009
  • In this paper, the technique to reinforce the durability performance of structure using the sensitivity information for the frame structure is applied. The fatigue life calculation for the frame structure is performed from the quasi-static and transient analysis and the characteristics of two methods are compared for the fatigue analysis. Then the reinforcement technique is applied. First, some design variables related to the locations of fatigue failure is selected. Then sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated and the vector composed of gaps between the target life and initial life cycles is calculated. If the number of fatigue fracture points is same as the number of design variables, the variations of the design variables are calculated from the linear algebraic equation. If not, the variations of the design variables are calculated from the optimization formulation with the constraints.