• Title/Summary/Keyword: Mechanical Production System

Search Result 860, Processing Time 0.027 seconds

Structural and Dynamic Characteristic Analysis of a Feeder for an Automatic Assembly System of an LED Convergent Lighting Module (LED 융합조명 모듈 자동화 조립 시스템의 피더에 관한 구조해석 및 동특성 해석)

  • Choo, Se-Woong;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In the current lighting market, LEDs that have a high luminous efficiency, a long life and consume less power have emerged as next generation lighting. Owing to various designs and sizes of LEDs, the production process of existing LEDs involves many tasks that require manual labor; hence, the assembly of LEDs necessitates manpower. Because of the use of manpower, the production costs of LEDs increases and production efficiency decreases. Recently, the assembly parts of LEDs have been standardized for minimizing manual labor, and an LED is developed as an LED panel. The automatic assembly system produces LED convergent lighting by assembling two LED panels and one diffusion cover. To increase the production efficiency of the LED convergent lighting module, it is important that the development of a feeder can continuously supply the LED panels is required, and whose design has sufficient stability. The automatic assembly system of the LED convergent lighting module consists of two feeders, which convey LED panels and diffusion covers to a main conveyor, which assembles the lifted panels and covers. In this study, structural analysis and fatigue life for forced loads on the conveyer line of the feeder in the process of lifting LED panels and diffusion covers of each feeder, is analyzed. In addition, the drive of the belt constituting the conveyor line of each feeder is simulated, and the dynamic characteristics of the belt is analyzed using the virtual engineering method.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

Ceramic Direct Rapid Tooling with FDM 3D Printing Technology (FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo;Oh, Won-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

A Study of Test and Evaluation Method for Performance Improvement of Air to Ground Communication Radios (공지통신무전기 성능개량을 위한 시험평가 방안 연구)

  • Lee, Byeongheon;Ahn, Seungbeom;Choi, Myungsuk;Hur, Jang-Wok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • The Republic of Korea has a close cooperative relationship with NATO, of which the United States is a member. NATO is encouraged to follow UHF coalition waveforms for military air operations(SATURN) as defined in STANAG 4372. SATURN is a high-speed frequency hopping waveform with enhanced anti-jamming and security functions. Plans to improve the performance of existing military aircraft with air to ground radios to which SATURN function is applied. IFF case analysis and MRT evaluation plan were established to present an efficient test and evaluation plan for air to ground radios.

Numerical study on the characteristics of TKE in coastal area for offshore wind power (해상풍력발전을 위한 연안지역의 난류에너지 특성 수치연구)

  • Yoo, Jung-Woo;Lee, Soon-Hwan;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1551-1562
    • /
    • 2014
  • To clarify the characteristics of TKE (Turbulence Kinetic Energy) variation for offshore wind power development, several numerical experiments using WRF were carried out in three different coastal area of the Korean Peninsula. Buoyancy, mechanical and shear production term of the TKE budget are fundamental elements in the production or dissipation of turbulence. Turbulent kinetic energy of the south coast region was higher than in other sea areas due to the higher sea surface temperature and strong wind speed. In south coast region, strong wind passing through the Korea Strait is caused by channelling effect of the terrain of the Geoje Island. Although wind speed is weak in east coast, because of large difference in wind speed between the upper and lower layer, the development of mechanical turbulence tend to be predominant. Since lower sea surface temperature and smaller wind shear were detected in west coastal region, the possibility of turbulence production not so great in comparison with other regions. The understanding of the characteristics of turbulence in three different coastal region can be reduced the uncertainty of offshore wind construction.

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

Development of LOD System and Contents Production of Experimental Course in Engineering (LOD 시스템 개발과 공학실험과목의 콘텐츠 제작)

  • Suh Sang-Ho;Roh Hyung-Woon;Cho Min-Tae;Yang Soo-Bong
    • Journal of Engineering Education Research
    • /
    • v.3 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • Future education for engineering should focus on the teaching of fundamentals, creativity cultivated through various experimental educational programs, and industry-related practices. This study presents the development of the LOD system and a contents production of the experimental courses in engineering in accordance with paradigm change. In this study, considerations and design plan for developing LOD system are discussed and they are applied to the contents production of the experimental course in engineering. The results of this study help to teach the experimental courses completely, providing the course supplements and the multimedia data required in the experimental courses, and to promote and conduct the student's projects. This study can also anticipate an image of the future university and present the direction where the university should follow in the future.

  • PDF

Dynamic thermal Design of a 1-ton Class Bio-Hydrogen Production System Simulator Using Industrial Waste Heat and by-Products (산업배열 및 부산물을 활용한 1톤급 바이오수소 생산 시뮬레이터 동적 열설계)

  • Kim, Hyejun;Kim, Seokyeon;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • This paper proposes a hydrogen-based social economy derived from fuel cells capable of replacing fossil fuels and resolving global warming, It thus provides an entry for developing economically feasible social configurations to make use of bio-hydrogen production systems. Bio-hydrogen production works from the principle that microorganisms decompose water in the process of converting CO to $CO_2$, thereby producing hydrogen. This study parts from an analysis of an existing 157-ton class NA1 bio-hydrogen reactor that identifies the state of feedstock and reactor conditions. Based on this analysis, we designed a 1-ton class bio-hydrogen reactor process simulator. We carried out thermal analyses of biological heat reactions, sensible heat, and heat radiation in order to calculate the thermal load of each system element. The reactor temperature changes were determined by modeling the feed mixing tank capacity, heat exchange, and heat storage tank. An analysis was carried out to confirm the condition of the feed mixing tank, heat exchanger, heat storage tank capacity as well as the operating conditions of the system so as to maintain the target reactor temperature.

Cost Analysis of Wrap Silage Production in the Paddy Field for Forage Crop Cropping System (답리작 사료작물의 랩사일리지 생산비 분석)

  • Ha, Yu-Shin;Park, Kyung-Kyoo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.75-84
    • /
    • 2012
  • Mechanized operation model and mechanical cultivation technology for winter barley, rye, Italian ryegrass and sudan grass wrap silage production system at the paddy field for cropping system was developed. Also, a series of experiment were performed and lots of data were collected and analyzed to develope mechanical technology, coverage area, and optimum size of the farm (break-even point) for wrap silage production system. The coverage area for winter barley or rye wrap-silage production system is determined around 61.9, 73.4, 77.5, 88.2 ha in the case of drill seeding and different ripening species by tractor power 50, 75, 100, 130 ps, respectably. The break-even point of the farming size is analyzed as 20 ha and its production cost is estimated around 367, 383, 430, 443 won/TDN-kg in the case of winter barley wrap-silage by tractor power 50, 75, 100, 130 ps, respectably. The break-even point of the farming size is analyzed as coverage area and its production cost is estimated around 237, 215 won/TDN-kg in the case of winter barley wrap silage and sudan grass by the tractor power 50, 100 ps, respectably.

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.