DOI QR코드

DOI QR Code

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid

열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성

  • Kim, Kyoung Hoon (Dept. of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과)
  • Received : 2016.10.10
  • Accepted : 2017.09.03
  • Published : 2017.11.01

Abstract

This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

본 연구에서는 아홉 종류의 작동유체를 고려하여 저온 열원으로 구동되는 아임계 및 초월임계 유기 랭킨 사이클의 열역학적 성능 특성을 비교 해석한다. 터빈입구압력, 열원온도 및 작동유체가 열교환기 내 온도분포와 핀치포인트, 작동유체의 유량, 시스템 출력 및 열효율 등 시스템의 성능에 미치는 영향을 분석한다. 해석 결과는 작동유체의 압력이 아임계 영역에서 초임계 영역으로 높아지면 열교환기에서 열원과 작동유체 사이의 온도 불균일 정도가 감소하면서 시스템 출력이나 열효율 등은 증가하나 시스템의 단위출력당 터빈 크기는 작아짐을 보여준다.

Keywords

References

  1. Bao, J. and Zhao, L., 2013, "A Review of Working Fluid and Expander Selections for Organic Rankine Cycle," Renew. Sustain. Energy Rev., Vol. 24, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  2. Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S. and Tsai, K. F., 2010, "A Study of Organic Working Fluids on System Efficiency of an ORC using Low-grade Energy Sources," Energy, Vol. 35, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  3. Dai, Y., Wang, J. and Gao, L., 2009, "Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery," Energy Convrs. Mgmt., Vol. 50, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  4. Aghahosseini, S. and Dincer, I., 2013, "Comparative Performance Analysis of Low-temperature Organic Rankine Cycle (ORC) using Pure and Zeotropic Working Fluids," Appl. Therm. Eng., Vol. 54, pp. 35-42. https://doi.org/10.1016/j.applthermaleng.2013.01.028
  5. Lai N. A., Wendland M. and Fisher J., 2011, "Working Fluids for High Temperature Organic Rankine Cycle," Energy, Vol. 36, pp. 199-211. https://doi.org/10.1016/j.energy.2010.10.051
  6. Maraver, D., Royo, J., Lemort, V. and Quoilin, S., 2014, "Systematic Optimization of Subcritical and Transcritical Organic Rankine Cycles (ORCs) Constrained by Technical Parameters in Multiple Applications," Appl. Energy, Vol. 117, pp. 11-29. https://doi.org/10.1016/j.apenergy.2013.11.076
  7. Yu, C., Xu J. and Sun, Y., 2015, "Transcritical Pressure Organic Rankine Cycle (ORC) Analysis based on the Integrated-average Temperature Difference in Evaporators," Appl. Therm. Eng., Vol. 88, pp. 2-13. https://doi.org/10.1016/j.applthermaleng.2014.11.031
  8. Shu, G., Shi, L., Tian, H., Li, X., Huang, G. and L. Chang, 2016, "An Improved $CO_2$-based Transcritical Rankine Cycle (CTRC) used for Engine Waste Heat Recovery," Appl. Energy, Vol. 176, pp. 171-182. https://doi.org/10.1016/j.apenergy.2016.05.053
  9. Li, L., Ge, Y. T., Luo, X. and Tassou, S. A., 2016, "Thermodynamic Analysis and Comparison between $CO_2$ Transcritical Power Cycles and R245fa Organic Rankine Cycles for Low Grade Heat to Power Energy Conversion," Appl. Therm. Eng., Vol. 106, pp. 1290-1299. https://doi.org/10.1016/j.applthermaleng.2016.06.132
  10. Zabek D., Penton, J. and Reay, D., 2013, "Optimization of Waste Heat Utilization in Oil Field Development Employing a Transcritical Organic Rankine Cycle (ORC) for Electricity Generation," Appl. Therm. Eng., Vol. 59, pp. 363-369. https://doi.org/10.1016/j.applthermaleng.2013.06.001
  11. Yue, C., Han, D., Pu, W. and He, W., 2015, "Comparative Analysis of a Bottoming Transcritical ORC and a Kalina Cycle for Engine Exhaust Heat Recovery," Energy Convs. Mgmt., Vol. 89, pp. 764-774. https://doi.org/10.1016/j.enconman.2014.10.029
  12. Tian, R., An, Q., Zhai, H. and Shi, L., 2016, "Performance Analyses of Transcritical Organic Rankine Cycles with Large Variations of the Thermophysical Properties in the Pseudocritical Region," Appl. Therm. Eng., Vol. 101, pp. 183-190. https://doi.org/10.1016/j.applthermaleng.2016.02.126
  13. Kim, S. G. and Kim, M. S., 2003, "Experimental Studies on the Performance of a Transcritical Cycle for Hot Water Heating using Carbon Dioxide," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 6, pp. 461-470.
  14. Kim, S. G. and Kim, M. S., 2003, "Analysis on the Performance of a Transcritical Cycle using Carbon Dioxide," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 6, pp. 471-479.
  15. Baik, Y. J., Chang, K. C., Lee, Y. S. and Ra, H. S., 2011, "Power Enhancement Potential of a Lowtemperature Heat-source-driven Rankine Power Cycle by Transcritical Operation," Transactions of the KSME B, Vol. 35, pp. 1343-1349. https://doi.org/10.3795/KSME-B.2011.35.12.1343
  16. Yang, T., Chen, G. J. and Gou, T. M., 1997, "Extension of the Wong-Sandler Mixing Rule to the Three-parameter Patel-Teja Equation of State: Application up to the Near-critical Region," Chem. Eng., Vol. 67, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  17. Gao, J., Li, L. D. and Ru, S. G., 2004, "Vapor-liquid Equilibria Calculation for Asymmetric Systems using Patel-Teja Equation of State with a New Mixing Rule," Fluid Phase Equil., Vol. 224, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007
  18. Yaws C. L., 1999, "Chemical Properties Handbook," McGraw-Hill.
  19. Kim, K. H., Han, C. H. and Kim, K., 2012, "Effects of Ammonia Concentration on the Thermodynamic Performances of Ammonia-Water Based Power Cycles," Thermochimica Acta, Vol. 530, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  20. Kim, K. H., Ko, H. J. and Kim, K., 2014, "Assessment of Pinch Point Characteristics in Heat Exchangers and Condensers of Ammonia-water based Power Cycles," Applied Energy, Vol. 113, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055