• Title/Summary/Keyword: Measuring sensor

Search Result 1,964, Processing Time 0.032 seconds

A Study on the Telemetry system for the Inhabitant Environments and Distribution of Fish-I - Sea Temperature , Salinity and Distribution of Fish - (어류의 서식환경과 분포생태의 원격계측에 관한 연구-I - 수온, 염분과 어류의 분포생태 -)

  • Sin, Hyeong-Il;An, Yeong-Hwa;Sin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.321-333
    • /
    • 1997
  • This paper describe on the transmitting/receiving functions and the monitoring effects for the telemetry system which is designed to monitor the environmental condition of a culturing fishery ground inside a bay. The telemetry experiments were carried out by the telemetry system which constructed with the sea water temperature/salinity measuring sensor and telesounder at culturing fishery ground located in the coast of Sangyang-Myon, Kyongsangnam-Do province from October, 1995 to May, 1996. The results of this experiment showed that the developed telemetry system could be used for monitoring the sea water temperature/salinity and the distribution of fish in culturing fishery ground.

  • PDF

Performance Evaluation of Balance Ability Equipment Using VR (VR을 이용한 균형능력 측정장비의 성능평가)

  • Yoon, Sangcheol;An, Howon;Ahn, Taekwon;Choi, Haesung;Lee, Byoungkwon;Seo, Dongkwon;Lee, Kyuhwan;Jung, Sangwoo;Yi, Jaehoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.33-41
    • /
    • 2020
  • Purpose : Conventional Balance Measurement can only measure the center of gravity and the shaking movement of the body. As a result, it has the disadvantages of not responding to visual changes and blocking functions of variables. This study was carried out to evaluate the performance of new equipment that measures the balance of the body using changes in body segment and pressure using the acceleration sensor to compensate for the disadvantages of the existing equipment. Methods : To this end, balance ability was measured in 43 healthy male/female adults without orthopedic injuries and nervous system damage in the last 6 months. in a situation where the visual information was restricted by Virtual Reality (VR) gear, all subjects measured and evaluated the balance ability utilizing the new equipment. Balance measurement (Prime Medilab, Korea) and Wii fit (Nintendo, Japan) were used to measure the balance ability of the subjects, and the balance ability test was performed in 4 postures using each device for data acquisition. The test duration for each posture was 30 seconds. For data acquisition, the average value of three experiments measured using each equipment was analyzed, and the statistical test was performed using the independent sample and the corresponding sample t-test, and the significance level was set to α=.05. Results : As a result of measuring the balance ability using individual equipment, blocking visual information using VR gear, the average speed, maximum speed, and moving area of the COP increased equally. It was found that the obtained absolute size of the result in Wii was somewhat larger than that of BM. Conclusion : It is considered that in the future research, it is necessary to measure changes in the body's center of gravity through image analysis, etc., to make clear comparison and evaluation of the usability.

Measuring the Environment of Pig Houses (돈사의 환경계측에 관한 연구)

  • 최규홍;손재룡;이강진;최동수;최용삼;남상일
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.155-164
    • /
    • 2001
  • Environmental factors such as $NH_3,\;H_2S,\;CO_2$, dust, temperature, and humidity in the animal house are a potential health hazard to humans and animals. Until now, most of measurement methods can only provide periodic results with low accuracy. A data acquisition system which can measure continuously and simultaneously $NH_3,\;H_2S,\;CO_2$, temperature, and humidity was developed and installed in two pig houses. Daily changes of environment for the pig-houses were investigated by the data acquisition system. In order to evaluate NH$_3$sensor, gas samples were obtained and NH$_3$concentrations were measured at nine positions; combinations of three positions(inlet, middle, and outlet) and three heights(0 cm, 40 cm, 150 cm). Ammonia concentration of 14.0 ~37.1 ppm for slurry pig-house is higher than that of 8.4~29.7 ppm for scraper pig-house, and there were no statistical differences among the positions. However, the concentration of $NH_3$at 150 cm was higher than thats of 0 cm and 40 cm.

  • PDF

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.

Development of Gait Distance Measurement System Based on Inertial Measurement Units (관성측정장치를 이용한 보행거리 측정 시스템 개발)

  • Lee, K.H.;Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait distance measurement system using accelerometer, gyroscope, and magnetometer. To minimize offset and gain error of inertial sensors, we performed the calibration using the self-made calibration jig with 9 degrees of freedom. For measuring accurate gait distance, we used gradient descent algorithm to remove gravity error and used analysis of gait pattern to remove drift error. Finally, we measured a gait distance by double-integration of the error-removed acceleration data. To evaluate the performance of our system, we walked 10m in a straight line indoors to observe the improvement of removing error which compared un-calibrated to calibrated data. Also, the gait distance measured by the system was compared to the measurement of the Vicon motion capture system. The evaluation resulted in the improvement of $31.4{\pm}14.38%$(mean${\pm}$S.D.), $78.64{\pm}10.84%$ and $69.71{\pm}26.25%$ for x, y and z axis, respectively when walked in a straight line, and a root mean square error of 0.10m, 0.16m, and 0.12m for x, y and z axis, respectively when compared to the Vicon motion capture system.

  • PDF

Basic Investigation for the Won-invasive Measurement of Blood Glucose Concentrations by Millimeter Waves (밀리미터파를 이용한 무혈 혈당 측정에 관한 기초 연구)

  • Kim Dong Kyun;Won Jong Hwa;Potapov Sergey N.;Meriakri Viacheslav V.;Chigryai Evgenii E.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • As a basic research for the development of a non-invasive blood glucose sensor using millimeter waves, we have presented a method for measuring the dielectric properties of high loss dielectrics, based on the reflection method, and investigated the variation of the dielectric properties of glucose-water and glucose -0.9% NaCl solutions in the 10~90 GHz range. In the proposed method, a minimal reflection condition is formed by placing a specially-chosen low-loss plane-parallel plate in front of a high-loss medium under test at a given frequency range. Using the minimal power reflection coefficient and the corresponding frequency at this condition, tile dielectric properties of the medium can be determined. The measured results on pure water have shown the adequacy of the proposed method. The measured results on glucose-water and glucose -0.9% NaCl solutions in the 10~90 GHz range showed that the variations of the dielectric properties of glucose solutions according to the change of their glucose concentration were maximum in the 30~45 GHz range. From these facts we concluded that the variation of about 3 mole/L in the glucose solutions must be distinguished With the measurement accuracies of ±0.1 dB and ±0.01 GHz.

Deposition Process Load Balancing Analysis through Improved Sequence Control using the Internet of Things (사물인터넷을 이용한 증착 공정의 개선된 순서제어의 부하 균등의 해석)

  • Jo, Sung-Euy;Kim, Jeong-Ho;Yang, Jung-Mo
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.323-331
    • /
    • 2017
  • In this paper, four types of deposition control processes such as temperature, pressure, input/output(I/O), and gas were replaced by the Internet of Things(IoT) to analyze the data load and sequence procedure before and after the application of it. Through this analysis, we designed the load balancing in the sensing area of the deposition process by creating the sequence diagram of the deposition process. In order to do this, we were modeling of the sensor I/O according to the arrival process and derived the result of measuring the load of CPU and memory. As a result, it was confirmed that the reliability on the deposition processes were improved through performing some functions of the equipment controllers by the IoT. As confirmed through this paper, by applying the IoT to the deposition process, it is expected that the stability of the equipment will be improved by minimizing the load on the equipment controller even when the equipment is expanded.

Effective PPG Signal Processing Method for Detecting Emotional Stimulus (감성 자극 판단을 위한 효과적인 PPG 신호 처리 방법)

  • Oh, Dong-Gi;Min, Byung-Seok;Kwon, Sung-Oh;Kim, Hyun-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.393-402
    • /
    • 2012
  • In this study, we propose a signal processing algorithm to measure the arousal level of a human subject using a PPG(Photoplethysmography) sensor. From the measured PPG signals, the arousal level is determined by PPI(Pulse to Pulse Interval) and discrete-time signal processing. We ran psychophysical experiments displaying visual stimuli on TV display while measuring PPG signal from a finger, where the nature landscape scenes were used for restorative effect, and the urban environments were used to stimulate the stress. However, the measured PPG signals may include noise due to subject movement and measurement error, which results in incorrect detections. In this paper, to mitigate the noise impact on stimulus detection, we propose a detecting algorithm using digital signal processing methods and statistics of measured signals. A filter is adopted to remove a high frequency noise and adaptively designed taking into account the statistics of the measured PPG signals. Moreover we employ a hysteresis method to reduce the distortion of PPI in decision of emotional. Via experiment, we show that the proposed scheme reduces signal noise and improves stimulus detection.