• Title/Summary/Keyword: Measurement Data

Search Result 11,535, Processing Time 0.046 seconds

Control of the Mobile Robot Navigation Using a New Time Sensor Fusion

  • Tack, Han-Ho;Kim, Chang-Geun;Kim, Myeong-Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations. Finally, the new space and time sensor fusion(STSF) scheme is applied to the control of a mobile robot in an unstructured environment as well as structured environment.

Estimation Model-based Verification and Validation of Fossil Power Plant Performance Measurement Data (추정모델에 의한 화력발전 플랜트 계측데이터의 검증 및 유효화)

  • 김성근;윤문철;최영석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2000
  • Fossil power plant availability is significantly affected by gradual degradations of equipment as operation of the plant continues. It is quite important to determine whether or not to replace some equipment and when to replace the equipment. Performance calculation and analysis can provide the information. Robustness in the performance calculation can be increased by using verification & validation of measured input data. We suggest new algorithm in which estimation relation for validated measurement can be obtained using correlation between measurements. Input estimation model is obtained using design data and acceptance measurement data of domestic 16 fossil power plant. The model consists of finding mostly correlated state variable in plant state and mapping relation based on the model and current state of power plant.

  • PDF

Calibration of Inertial Measurement Units Using Pendulum Motion

  • Choi, Kee-Young;Jang, Se-Ah;Kim, Yong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.234-239
    • /
    • 2010
  • The utilization of micro-electro-mechanical system (MEMS) gyros and accelerometers in low-level inertial measurement unit (IMU) influences cost effectiveness in a positive way under the condition that device error characteristics are fully calibrated. The conventional calibration process utilizes a rate table; however, this paper proposes a new method for achieving reference calibration data from the natural motion of pendulum to which the IMU undergoing calibration is attached. This concept was validated with experimental data. The pendulum angle measurements correlate extremely well with the solutions acquired from the pendulum equation of motion. The calibration data were computed using the regression method. The whole process was validated by comparing the measurement from the 6 sensor components with the measurements reconstructed using the identified calibration data.

Measurement of Electromagnetic Properties of Concrete for Nondestructive Testing (비파괴 시험을 위한 콘크리트의 전자기적 특성의 측정)

  • 임홍철;정성훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Characterizing the electromagnetic properties of concrete is essential to the enhancement of accuracy and reliability in nondestructive testing of concrete structures using electromagnetic techniques. To establish a data base for the properties of concrete, a measurement technique has been developed and a set of data has been obtained for the frequency range of 1~6 GHz. As moisture content is one of major contributing factors to determine permittivity of dielectric material, moisture content is varied during the measurement. An application of a measurement system which consists of open-ended coaxial probe and automatic network analyzer to concrete and mortar specimens is studied. For this, calibration techniques, size of specimens, and number of measurements necessary to obtain reliable data are investigated. From the measured data, it is shown that moisture content plays an important role to determine the permittivity of specimens. As the moisture content increases. The permittivity of specimens show tendency to approach the permittivity of water.

A Study on Indoor Mobile Robot Navigation Used Space and Time Sensor Fusion

  • Jin, Tae-Seok;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.104.2-104
    • /
    • 2002
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system , the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is il lustrated by examples and...

  • PDF

Statistical Study on the Measurement Assurance Program in Environmental Pollution Measurement Activities -The Round-Robin Test about Water Pollution- (水質汚染物質의 共同試料分析調査)

  • 李載昌;申漢豊;李樂榮
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.194-212
    • /
    • 1980
  • This report describes a preliminary study necessary to implement Measurement Assurance Program (MAP). The purpose of the study is to improve the measurement reliability of the laboratories which take environmental pollution measurement. We carried out the interlaboratory test or "Round-Robin" test program in which seven laboratories participated in order to obtain more reliable data about water pollution.pollution.

  • PDF

Development of the Modified Preprocessing Method for Pipe Wall Thinning Data in Nuclear Power Plants (원자력 발전소 배관 감육 측정데이터의 개선된 전처리 방법 개발)

  • Seong-Bin Mun;Sang-Hoon Lee;Young-Jin Oh;Sung-Ryul Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.146-154
    • /
    • 2023
  • In nuclear power plants, ultrasonic test for pipe wall thickness measurement is used during periodic inspections to prevent pipe rupture due to pipe wall thinning. However, when measuring pipe wall thickness using ultrasonic test, a significant amount of measurement error occurs due to the on-site conditions of the nuclear power plant. If the maximum pipe wall thinning rate is decided by the measured pipe wall thickness containing a significant error, the pipe wall thinning rate data have significant uncertainty and systematic overestimation. This study proposes preprocessing of pipe wall thinning measurement data using support vector machine regression algorithm. By using support vector machine, pipe wall thinning measurement data can be smoothened and accordingly uncertainty and systematic overestimation of the estimated pipe wall thinning rate data can be reduced.

Body Shape Measurement Using Stereo Photo (입체사진을 위용한 인체형상계측)

  • Choe, Hyeok-Ju;Seong, Gyeong-Hwa;Lee, Hyeon-Jik
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.5
    • /
    • pp.664-675
    • /
    • 1998
  • The purpose of this study was to isolate the observational error included in plane photogrammetric data and suggest more accurate and suitable method for body shape measurement. Three experiments were carried out in this study. First of all, the variables which can be obtained from photogrammetric method were selected among the data which can be measured improperly by direct measurement or showing large deviations between the samples. Secondly, the height, the width and the depth of 50 subjects were measured by plane photogrammetry. The result showed that plane photogrammetric data contain significant observational error even for the same variables, as the angle of which photos had been taken changes. Therefore, in order to reduce the observational error and to measure the human body accurately, three-dimensional measurement, stereo photogrammetry was employed in the last experiment. As it is important to isolateonly the observational error by plane photogrammetry and to exclude the accidental error caused by movement of human body subject, body shape model(manikin) was used as subject. The result showed that the average observational error by plane photogrammetry was more than 4 cm in the height, 0.85-1.29cm in the width and 0.49cm in the depth. In conclusion, it is not adequate to use the height obtained from plane photogrammetric data as human body measurement data. And the width and the depth should be used cautiously, even though they are relatively less significant, the error still can make some difference on clothing construction.

  • PDF

Improvement of SOC Structure Automated Measurement Analysis Method through Probability Analysis of Time-History Data (시계열 데이터의 확률분석을 통한 SOC 구조물 자동화계측 분석기법 개선)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han;Jee-Seung Chung;Jung-Ho Kim;Bong-Chul Joo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.679-684
    • /
    • 2023
  • Currently, large-scale and deep-depth excavation construction is being carried out in the vicinity of structures due to overdensity in urban areas in Korea. It is very important to secure the safety of retaining structures and underground structures for adjacent excavation work in urban areas. The safety of facilities is managed by introducing an automated measurement system. However, the utilization of the results of the automated measurement system is very low. Conventional evaluation techniques rely only on the maximum value of the measured data, and can overestimate abnormal behavior. In this study, we intend to improve the analysis technique for the automation measurement results. In order to identify abnormal behavior of facilities, a time-series analysis method for automated measurement data was presented. By applying a probability statistical analysis technique to a vast amount of data, highly reliable results were derived. In this study, the analysis method and evaluation method that can process the vast amount of data of facilities have been improved.