• 제목/요약/키워드: Measured Rate System

검색결과 2,490건 처리시간 0.026초

0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성 (Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System)

  • 류호정;김정환;황병욱;남형석;이도연;조성호;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.

Nonlinear adaptive control for multivariable system

  • Song, Sukheung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.60.4-60
    • /
    • 2002
  • Nonlinear adaptive control for the laboratory pressure-flow model. Control valves are installed on both sides. The pressure and the outlet flow rate are measured. The pressure and outlet flow rate are controlled variables and the control valve stem positions on both sides are the manipulated variables. The variation in both inputs will influence both controlled variables. The control performance is good, in spite of varying valve coefficients of inlet and outlet.

  • PDF

유압관로의 동특성을 이용한 비정상 유량계측 (Unsteady Flow Rate Measurement by Using Hydraulic Pipeline Dynamics)

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.411-416
    • /
    • 1999
  • The measurement of unsteady flow rate is of vital importance to clarify and improve the dynamic characteristics in pipeline, hydraulic components and system. There is also demand for a real time flow sensor of ability to measure unsteady flow rate with high accuracy and fast response to realize feedback control of flow rate in fluid power systems. In this paper, we propose an approach for estimating unsteady flow rate through a pipeline and components under high pressure condition. In the method, unsteady flow rate is estimated by using hydraulic pipeline dynamics and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-checking functions of the method, the validity is investigated by comparison with the measured and estimated pressure waveforms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate waveforms and theroetical those under unsteady laminar flow conditions. the method proposed here is useful in estimating unsteady flow rate through an arbitray cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

  • PDF

Investigation on the Selection of Capillary Tube for the Alternative Refrigerant R-407C

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.40-49
    • /
    • 2000
  • The capillary tube performance for R-407C is experimentally investigated. The experimental setup is a real vapor-compression refrigerating system. Mass flow rate is measured for various diameter and length while inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rate of the numerical model is about 14% less than the measured mass flow rate. It is found that mass flow rate and length for R-407C are less than those for R-22 under the same condition. Based on this experimental study and the numerical model, a set of design charts for capillary tube of R-407C is proposed.

  • PDF

실내공기질 모델을 이용한 환기 시스템의 공기 정화 효율성 평가 (Evaluation of Ventilation System Performance Using Indoor Air Quality Model)

  • 최성우
    • 한국환경보건학회지
    • /
    • 제23권4호
    • /
    • pp.57-66
    • /
    • 1997
  • Successful energy conservation and good indcfor air quality (IAQ) are highly dependent on ventilation system. Air filtration is a primary solution of indoor air control strategies in terms of reducing energy consumption and improving ihdoor air quality. A conventional system with bypass filter, as it is called variable-air-volume/bypass filtration system (VAV/BPFS), is a variation of the conventional variable air volume (VAV) systems, which is designed to eliminate indoor air pollutant and to save energy. Bypass filtration system equipped with a high-efficiency particulate filter and carbon absorbent provides additional cleaned air into indoor environments and maintain good IAQ for human health. The objectives of this research were to compare the relative total decay rate of indoor air pollutant concentrations, and to develop a mathematical model simulating the performance of VAV/BPFS. All experiments were performed in chamber under the controlled conditions. The specific conclusions of this research are: 1. The VAV/BPFS system is more efficient than the VAV system in removing indoor air pollutant concentration. The total decay rates of aerosol, and total volatile organic compound (TVOC) for the VAV/BPFS system were higher than those of the conventional VAV system. 2. IAQ model predictions of each pollutant agree closely with the measured values. 3. According to IAQ model evaluation, reduction of outdoor supply air results in decreased dilution removal rate and on increased bypass filtration removal rate with the VAV/BPFS. As a results, we recommends the VAV/BPFS as an alternative to conventional VAV systems.

  • PDF

전자파 비흡수율(SAR) 측정용 인체 두뇌 모의 용액의 복소 비유전율 측정 (Complex Permittivity Measurement of Simulated Brain Tissue for the Evaluation of Specific Absorption Rate(SAR))

  • 김정호;김윤명
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 I
    • /
    • pp.310-313
    • /
    • 2003
  • Complex permittivities of human head simulating liquids were measured by a sample holder of terminated slotted coaxial line with a movable probe at mobile communication frequencies. The validity of the liquid measurement system was checked by experiments with the reference liquids. Liquids of ingredients for human brain suggested in IEEE draft and those made by the authors were measured by this slotted line system.

  • PDF

지그비 기반의 실시간 무선 네트워크 모터 제어시스템 (ZigBee-based Real-time Wireless Networked Motor Control System)

  • 박정일
    • 대한임베디드공학회논문지
    • /
    • 제15권2호
    • /
    • pp.103-109
    • /
    • 2020
  • This paper finds solutions for using ZigBee in wireless networked control system (WNCS). The round trip time delay and packet loss rate of the WNCS are measured. On the basis of these measured data, a playback buffer is used to solve the variable time delay in WNCS, and a Smith predictor is introduced to compensate for the time delay. The WNCS was able to be actually constructed to perform DC motor position control with 40 Hz sampling frequency.

월경통 환자의 월경주기에 따른 심박변이도(Heart Rate Variability) 차이에 대한 고찰 (Effects of Menstrual Cycle on Heart Rate Variability in Dysmenorrhea Patients)

  • 김은숙;문승준;조한백;임은미;고성규;조정훈
    • 대한한방부인과학회지
    • /
    • 제23권2호
    • /
    • pp.124-130
    • /
    • 2010
  • Purpose: The aim of the study was to investigate menstrual cycle phase differences in Heart Rate Variability(HRV) in dysmenorrhea patients. Methods: 16 dysmenorrhea patients were enrolled. The severity of dysmenorrhea was measured by Visual Analog Scale(VAS). Recordings for HRV analysis were obtained during the two phases of the menstrual cycle (follicular phase 4~10 days and luteal phase 18~23 days from the start of bleeding). Results: No measure of HRV was significantly different between two menstrual cycle phases. Conclusion: We concluded that menstrual cycle was not significantly associated with changes in autonomic nervous system as measured by HRV in dysmenorrhea patients.

송출공의 회전이 송출계수와 압력계수에 미치는 영향 (The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient)

  • 하경표;구남희;고상근
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

Cu ECMP 공정에서 전해액이 연마거동에 미치는 영향 (The Effect of Electrolytes on Polshing Behavior in Cu ECMP)

  • 권태영;김인권;김태곤;조병권;박진구
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.334-338
    • /
    • 2008
  • The purpose of this study is to characterize various electrolytes on electrochemical mechanical planarization (ECMP). The ECMP system was modified from conventional CMP system to measure the potentiodynamic curve and removal rate of Cu. The potentiodynamic curves were measured in static and dynamic states in investigated electrolytes using a potentiostat for the evaluation of the polishing behavior on ECMP. KOH (alkaline) and $NaNO_3$ (salt) were selected as electrolytes which have high conductivity. In static and dynamic states, the corrosion potential decreased and the corrosion current increased as a function of the electrolyte concentration. But, the electrochemical reaction was prevented by mechanical polishing effect in the dynamic state. The static etch and removal rate were measured as functions of concentration and applied voltage. When $NaNO_3$ was used, the dissolution was much faster than that of KOH. It was concluded that the removal rate was strongly depended on electrochemical dissolution. The removal rate increased up to 350 nm/min in $NaNO_3$ based electrolyte.