• Title/Summary/Keyword: Mean-Field Model

Search Result 681, Processing Time 0.028 seconds

L-band SAR-derived Sea Surface Wind Retrieval off the East Coast of Korea and Error Characteristics (L밴드 인공위성 SAR를 이용한 동해 연안 해상풍 산출 및 오차 특성)

  • Kim, Tae-Sung;Park, Kyung-Ae;Choi, Won-Moon;Hong, Sungwook;Choi, Byoung-Cheol;Shin, Inchul;Kim, Kyung-Ryul
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.477-487
    • /
    • 2012
  • Sea surface winds in the sea off the east coast of Korea were derived from L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data and their characteristics of errors were analyzed. We could retrieve high-resolution wind vectors off the east coast of Korea including the coastal region, which has been substantially unavailable from satellite scatterometers. Retrieved SAR-wind speeds showed a good agreement with in-situ buoy measurement by showing relatively small an root-mean-square (RMS) error of 0.67 m/s. Comparisons of the wind vectors from SAR and scatterometer presented RMS errors of 2.16 m/s and $19.24^{\circ}$, 3.62 m/s and $28.02^{\circ}$ for L-band GMF (Geophysical Model Function) algorithm 2009 and 2007, respectively, which tended to be somewhat higher than the expected limit of satellite scatterometer winds errors. L-band SAR-derived wind field exhibited the characteristic dependence on wind direction and incidence angle. The previous version (L-band GMF 2007) revealed large errors at small incidence angles of less than $21^{\circ}$. By contrast, the L-band GMF 2009, which improved the effect of incidence angle on the model function by considering a quadratic function instead of a linear relationship, greatly enhanced the quality of wind speed from 6.80 m/s to 1.14 m/s at small incident angles. This study addressed that the causes of wind retrieval errors should be intensively studied for diverse applications of L-band SAR-derived winds, especially in terms of the effects of wind direction and incidence angle, and other potential error sources.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

The Effect of Corporate Association on the Perceived Risk of the Product (소비자의 제품 지각 위험에 대한 기업연상과 효과: 지식과 관여의 조절적 역활을 중심으로)

  • Cho, Hyun-Chul;Kang, Suk-Hou;Kim, Jin-Yong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.1-32
    • /
    • 2008
  • Brown and Dacin (1997) have investigated the relationship between corporate associations and product evaluations. Their study focused on the effects of associations with a company's corporate ability (CA) and its corporate social responsibility (CSR) on consumers' product evaluations. Their study has found that both of CA and CSR influenced product evaluation but CA association has a stronger effect than CSR associations. Brown and Dacin (1997) have, however, claimed that there are few researches on how corporate association impacts product responses. Accordingly, some of researchers have found the variables to moderate or to mediate the relationship between the corporate association and the product responses. In particular, there has been existed a few of studies that tested the influence of the reputation on the product-relevant perceived risk, but the effects of two types of the corporate association on the product-relevant perceived risk were not identified so far. The primary goal of this article is to identify and empirically examine some variables to moderate the effects of CA association and CSR association on the perceived risk of the product. In this articles, we take the concept of the corporate associations that Brown and Dacin (1997) had proposed. CA association is those association related to the company's expertise in producing and delivering its outputs and CSR association reflected the organization's status and activities with respect to its perceived societal obligations. Also, this study defines the risk, which is the uncertainty or loss of the product and corporate that consumers have taken in a particular purchase decision or after having purchased. The risk is classified into product-relevant performance risk and financial risk. Performance risk is the possibility or the consequence of a product not functioning at some expected level and financial risk is the monetary loss one perceives to be incurring if a product does not function at some expected level. In relation to consumer's knowledge, expert consumers have much of the experiences or knowledge of the product in consumer position and novice consumers does not. The model tested in this article are shown in Figure 1. The model indicates that both of CA association and CSR association influence on performance risk and financial risk. In addition, the effects of CA and CSR are moderated by product category knowledge (product knowledge) and product category involvement (product involvement). In this study, the relationships between the corporate association and product-relevant perceived risk are hypothesized as the following form. For example, Hypothesis 1a($H_{1a}$) is represented that CA association has a positive influence on the performance risk of consumer. Also, the hypotheses that identified some variables to moderate the effects of two types of corporate association on the perceived risk of the product are laid down. One of the hypotheses of the interaction effect is Hypothesis 3a($H_{3a}$), it is described that consumer's knowledges of the product moderates the negative relationship between CA association and product-relevant performance risk. A field experiment was conducted in order to examine our model. The company tested was not real but imagined to meet the internal validity. Water purifiers were used for our study. Four scenarios have been developed and described as the imaginary company: Type A with both of superior CA and CSR, Type B with superior CSR and inferior CA, Type C with superior CA and inferior CSR, and Type D with both inferior of CA and CSR. The respondents of this study were classified into four groups. One type of four scenarios (Type A, B, C, or D) in its questionnaire was given to the respondent who filled out questions. Data were collected by means of a self-administered questionnaire to the respondents, chosen in convenience. A total of 300 respondents filled out the questionnaire but 207 were used for further analysis. Table 1 indicates that the scales in this study are reliable because the range of coefficients of Cronbach's $\alpha$ are from 0.85 to 0.92. The composite reliability is in the range of 0,85 to 0,92 and average variance extracted is in 0.72-0.98 range that is higher than the base level of 0.6. As shown in Table 2, the values for CFI, NNFI, root-mean-square error approximation (RMSEA), and standardized root-mean-square residual (SRMR) are acceptably close to the standards suggested by Hu and Bentler (1999):.95 for CFI and NNFI,.06 for RMSEA, and.08 for SRMR. We also tested discriminant validity provided by Fornell and Larcker (1981). As shown in Table 2, we found strong evidence for discriminant validity between each possible pair of latent constructs in all samples. Given that these batteries of overall goodness-of-fit indices were accurate and that the model was developed on theoretical bases, and given the high level of consistency across samples, this enables us to proceed the previously defined scales. We used the moderated hierarchical regression analysis to test the influence of the corporate association(CA and CSR associations) on product-relevant perceived risk(performance and financial risks) and to identify the variables moderating the relationship between the corporate association and product-relevant performance risk. In this study, dependent variables are performance and financial risk. CA and CSR associations are described the independent variables. The moderating variables are product category knowledge and product category involvement. The results are, as expected, found that CA association has statistically a significant influence on the perceived risk of the product, but CSR association does not. Product category knowledge and involvement moderate the relationship between the CA association and the perceived risk of the product. However, the effect of CSR association on the perceived risk of the product is not moderated by the consumers' knowledge and involvement. For this result, it is necessary for a corporate to inform its customers CA association more than CSR association so that they could be felt to be the reduction of the perceived risk. The important theoretical contribution of this research is the meanings that two types of corporate association that Brown and Dacin(1997), and Brown(1998) have proposed replicated the difference of the effects on product evaluation. According to Hunter(2001), it was an important affair to accomplish the validity of a particular study and we had to take about ten studies to deduce a strict study. Next, there is the contribution of the this study to find that the effects of corporate association on the perceived risk of the product are varied by the moderator variables. In particular, the moderating effect of knowledge on the relationship between corporate association and product-relevant perceived risk has not been tested in Korea. In the managerial implications of this research, we suggest the necessity to stress the ability that corporate manufactures the product well(CA association) than the accomplishment of corporate's social obligation(CSR association). This study suffers from various limitations that imply future research directions. The moderating effects of product category knowledge and involvement on the relationship between corporate association and perceived risk need to be replicated. Next, future research could explore whether the mediated effects of the perceived risk has the relationship between corporate association and consumer's product purchase. In addition, to ensure the external validity of the study will be needed to use realistic company, not artificial.

  • PDF

GROWTH AND DEVELOPMENT OF ARCH FORM (치열궁의 성장 변화)

  • Sohn, Byung-Wha;Baik, Hyoung-seon
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.17-27
    • /
    • 1998
  • Study on growth change of dental arch is considered to both an important data in orthodontic diagonsis and treatment planning as well as analysis of treatment results , also, arch form is important in anthropology and dentistry, even more so in prosthodontics and orthodontics. In the field of orthodontics, studies on the functional aspect of upper and lower teeth and maintenance of stability of dentition and occlusion were carried out from the early days. Some of the early studies include explanation of growth change in dental arch from measuring directly fom human stroll, and afterwards, cephalometrics x-rays were introduced; accordingly, studies using cephalometric measurement and linear measurements of study models were often performed. By this method, arch width, arch depth and perimeters were measured, and growth change or dental arch was studied. The subject ror this study were sn children(boys and girls or ages from 3 yens to 12 years from Kang-won district and Seoul, who has no history of orthodontic treatment and who show healthy status and normal growth and development. Cephalometric x-ray, panoramic x-ray, and study model were taken for each subject consecutively for 2 years, and the subjects are still followed up. 400 pairs of study models from the past two years were used in this study; mesio-distal diameater of each tooth, intercanine width, intermolar width, canine depth, molar depth and arch perimeters were measured. Afterwards, mean value and each standard deviation of each age group and each gender were obtained, and representation graph were drawn. The following conclusion were obtained. 1. Intercanine width showed gradual increase until the age of 10-years and after that, showed no increase. 2. Intermolar width in upper arch showed gradual increase : intermolar width in lower arch showed no significant chang, and after the age of 9-years, showed increase. 3. Cainine arch depth showed relatively rapid increase after the age of 6-years, and this pattern was more obvious in lower arch. 4. Molar arch depth increased gradually in both archs and it decrease after the age of 10-years : this phenomenon was more prominent in the lower arch. 5. Arch perimeter showed gradual inerease and convert to plateau at the age of 10-years, after that, it decreased. this pattern was more prominent in lower arch.

  • PDF

Ecological Health Assessments on Turbidwater in the Downstream After a Construction of Yongdam Dam (용담댐 건설후 하류부 하천 생태계의 탁수영향 평가)

  • Kim, Ja-Hyun;Seo, Jin-Won;Na, Young-Eun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.130-142
    • /
    • 2007
  • This study was to examine impacts of turbid water on fish community in the downstream of Yongdam Dam during the period from June to October 2006. For the research, we selected six sampling sites in the field: two sites were controls with no influences of turbid water from the dam and other remaining four sites were the stations for an assessment of potential turbid effects. We evaluated integrative health conditions throughout applications of various models such as necropsy-based fish health assessment model (FHA), Index of Biological Integrity (IBI) using fish assemblages, and Qualitative Habitat Evaluation Index (QHEI). Laboratory tests on fish exposure under 400 NTU were performed to find out impact of turbid water using scanning electron microscope (SEM). Results showed that fine solid particles were clogging in the gill in the treatments, while particles were not found in the control. This results indicate that when inorganic turbidity increases abruptedly, fish may have a mechanical abrasion or respiratory blocking. The stream health condition, based on the IBI values, ranged between 38 and 48 (average: 42), indicating a "excellent" or "good" condition after the criteria of US EPA (1993). In the mean time, physical habitat condition, based on the QHEI, ranged 97 to 187 (average 154), indicating a "suboptimal condition". These biological outcomes were compared with chemical dataset: IBI values were more correlated (r=0.526, p<0.05, n=18) with QHEI rather than chemical water quality, based on turbidity (r=0.260, p>0.05, n=18). Analysis of the FHA showed that the individual health indicated "excellent condition", while QHEI showed no habitat disturbances (especially bottom substrate and embeddeness), food-web, and spawning place. Consequently, we concluded that the ecological health in downstream of Yongdam Dam was not impacted by the turbid water.

A Study on the DWI and Pathologic Findings of Cancer Cells (암 세포주의 확산강조영상과 병리학적 관계에 관한 연구)

  • Seong, Jae-Gu;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.239-244
    • /
    • 2011
  • In this study, we evaluated diffusion weighted imaging (DWI) to investigate whether the DWI parameters can predict characteristic parameters on pathologic specimens of tumor or not. CFPAC-1 was injected subcutaneously on the back flank of athymic nude mice (n=13) then two tumors were initiated on each mouse (2${\times}$13=26 tumors). The mice were sacrificed to make specimen immediately after initial MR imaging then were compared with the MR image. A dedicated high-field (7T) small-animal MR scanner was used for image acquisitions. A T1 and T2 weighted axial image using RARE technique was acquired to measure the T2 values and tumor size. DWI MR was performed for calculating ADC values. To evaluate tumor cellularity and determine the levels of MVD, tumor cells were excised and processed for H-E staining and immunostaining using CD31. T2 values and ADC values were computed and analyzed for each half of the tumors and compared to the correlated specimens slide. Median ADC within each half of mass was compared to the cellularity and MVD in the correlated area of pathologic slide. The mean of ADC value is $0.7327{\times}10^{-3}$ $mm^2/s$ and standard deviation is $0.1075{\times}10^{-3}$ $mm^2/s$. There is a linear relationship between ADC value and tumor necrosis (R2=0.697, p< 0.001). DW image parameters including the ADC values can be utilized as surrogate markers to assess intratumoral neoangiogenesis and change of the internal structure of tumor cells.

A Study on the Evaluative Models and Indicators for Diagnosis of Urban Visual Landscape - Focusing on Seoul City - (도시경관 진단을 위한 평가모델 및 지표개발 연구 - 서울시를 중심으로 -)

  • Kim, Seung-Ju;Im, Seung-Bin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.78-86
    • /
    • 2009
  • Recently, there seems to besome problems in the urban visual landscape as a result of continuous economic growth and industrial development. At the same time, the public has begun to be aware of the importance of visual resources, and the necessity for visual landscape conservation and improvement. Therefore, the development of evaluative indicators for systematic visual landscape planning and design is urgent. The purpose ofthis study is to discover evaluative models and indicators for the diagnosis of urban visual landscapes. This study included the selection of 18 physical indicators(statistical data) by literature reviews, adoption of field and questionnaire surveys at 12 autonomous districts in Seoul and surrounding major mountain valleys and river streams(i.e. Mt. Nam and Han-River). The content of the questionnaire is scenic beauty. Moreover, the linear regression analysis between the scenic beauty mean scores and the physical indicator scores figure out the scenic beauty prediction model. As this study suggests, the most important indicators in urban visual landscapes are 'Greens', 'Park' and 'the number of apartment buildings(higher than 20 stories).' Based on the results, greens and parks should be priority elements to considerin urban landscape planning and design. Moreover, since the number of apartment buildings that are higher than 20 stories has a negative correlation with the scenic beauty score, it can be used as basic data for landscape planning. For the scenic beauty prediction models and evaluative indicators suggest a direction of urban management, each indicator becomes basic data for visual landscape planning and design. In following studies, if physical indicators and case studies are added, the scenic beauty prediction models and evaluative indicators could be more synthetic and systematic. Moreover, the development of physical indicators in three dimensions(3D)(i.e. results from visual district analysis, view surface analysis) could be expected to obtain more general and varied results.

Timing of Diapause Induction and Number of Generations of Helicoverpa armigera (Hüber) (Lepidoptera: Noctuidae) in Suwon, Korea (수원지방에서 왕담배나방 (밤나방과) 휴면 유기시기와 연간 발생 세대)

  • Jung, Jin Kyo;Seo, Bo Yoon;Park, Chang-Gyu;Ahn, Seung-Joon;Kim, Ju Il;Cho, Jum Rae
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.383-392
    • /
    • 2015
  • We investigated the induction of pupal diapause and number of generation for H. armigera using outdoor rearing and sex pheromone trapping in Suwon, Korea. Over-wintering pupae were induced when neonate larvae were reared in the outdoors from late Aug. to early Oct. in 2013 and 2014. H. armigera adults emerged from late May to early Jun. for 2013 colonies and from late May to late Jun. for 2014 colonies. The colonies placed after mid September produced only diapause pupae, to show environmental conditions that day-lengths on the rearing start date were 11 h 49 min~12 h 24 min, and mean temperatures before pupation were $14.8{\sim}20.7^{\circ}C$. Summer diapause was not observed in all colonies. The peak occurrence of H. armigera adults from sex pheromone trap in Suwon and Hwaseong were pooled and showed four generations (1st: from late Apr. to mid Jun., 2nd: from mid Jun. to late Jul., 3rd: from mid Jul. to late Aug., 4th: from late Aug. to mid Oct.). A degree-day model for development of H. armigera developed by Mironidis and Savopoulou-Soultani (2008) was used to validate the number of generation from field observations using pheromone traps. The 3rd and over-wintering generations were mainly overlapped. It was decided that H. armigera has one over-wintering and three complete generations in a year, and diapause is induced from offsprings of the 3rd and 4th generations adults. It is expected that larvae of the 1st and 2nd generations give a damage to ear zone in maize fields in which have been planted during April.

Prediction of Key Variables Affecting NBA Playoffs Advancement: Focusing on 3 Points and Turnover Features (미국 프로농구(NBA)의 플레이오프 진출에 영향을 미치는 주요 변수 예측: 3점과 턴오버 속성을 중심으로)

  • An, Sehwan;Kim, Youngmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.263-286
    • /
    • 2022
  • This study acquires NBA statistical information for a total of 32 years from 1990 to 2022 using web crawling, observes variables of interest through exploratory data analysis, and generates related derived variables. Unused variables were removed through a purification process on the input data, and correlation analysis, t-test, and ANOVA were performed on the remaining variables. For the variable of interest, the difference in the mean between the groups that advanced to the playoffs and did not advance to the playoffs was tested, and then to compensate for this, the average difference between the three groups (higher/middle/lower) based on ranking was reconfirmed. Of the input data, only this year's season data was used as a test set, and 5-fold cross-validation was performed by dividing the training set and the validation set for model training. The overfitting problem was solved by comparing the cross-validation result and the final analysis result using the test set to confirm that there was no difference in the performance matrix. Because the quality level of the raw data is high and the statistical assumptions are satisfied, most of the models showed good results despite the small data set. This study not only predicts NBA game results or classifies whether or not to advance to the playoffs using machine learning, but also examines whether the variables of interest are included in the major variables with high importance by understanding the importance of input attribute. Through the visualization of SHAP value, it was possible to overcome the limitation that could not be interpreted only with the result of feature importance, and to compensate for the lack of consistency in the importance calculation in the process of entering/removing variables. It was found that a number of variables related to three points and errors classified as subjects of interest in this study were included in the major variables affecting advancing to the playoffs in the NBA. Although this study is similar in that it includes topics such as match results, playoffs, and championship predictions, which have been dealt with in the existing sports data analysis field, and comparatively analyzed several machine learning models for analysis, there is a difference in that the interest features are set in advance and statistically verified, so that it is compared with the machine learning analysis result. Also, it was differentiated from existing studies by presenting explanatory visualization results using SHAP, one of the XAI models.