• Title/Summary/Keyword: Mean value coordinate

Search Result 36, Processing Time 0.022 seconds

Shape Deformation of Triangular Net (삼각망의 형상 변형)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.134-143
    • /
    • 2007
  • A new approach based on mean value coordinate combined with Laplacian coordinate is proposed for shape deformation of a large polygon model composed of triangular net. In the method, the spherical mean value coordinates for closed control meshes is introduced to describe a vertex in the triangle meshes to be deformed. Furthermore, the well known quardratic least square method for the Laplacian coordinates is employed in order to deform the control meshes. Because the mean value coordinates are continuous and smooth on the interior of control meshes, deforming operation of control meshes change the shape of polygon model while preserving the intrinsic surface detail. The effectiveness and validity of this novel approach was demonstrated by using it to deform large and complex polygon models with arbitrary topologies.

Three Dimensional Shape Morphing of Triangular Net (삼각망의 3 차원 형상 모핑)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.160-170
    • /
    • 2008
  • Shape morphing is the process of transforming a source shape, through intermediate shapes, into a target shape. Two main problems to be considered in three dimensional shape morphing are vertex correspondence and path interpolation. In this paper, an approach which uses the linear interpolation of the Laplacian coordinates of the source and target meshes is introduced for the determination of more plausible path when two topologically identical shapes are morphed. When two shapes to be morphed are different in shape and topology, a new method which combines shape deformation theory based on Laplacian coordinate and mean value coordinate with distance field theory is proposed for the efficient treatment of vertex correspondence and path interpolation problems. The validity and effectiveness of the suggested method was demonstrated by using it to morph large and complex polygon models including male and female whole body models.

Extended Kalman Filtering for I.M.U. using MEMs Sensors (반도체 센서의 확장칼만필터를 이용한 자세추정)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.469-475
    • /
    • 2015
  • This paper describes about the method for designing an extended Kalman filter to accurately measure the position of the spatial-phase system using a semiconductor sensor. Spatial position is expressed by the correlation of the rotated coordinate system attached to the body from the inertia coordinate system (a fixed coordinate system). To express the attitude, quaternion was adapted as a state variable, Then, the state changes were estimated from the input value which was measured in the gyro sensor. The observed data is the value obtained from the acceleration sensor. By matching between the measured value in the acceleration sensor and the predicted calculation value, the best variable was obtained. To increase the accuracy of estimation, designation of the extended Kalman filter was performed, which showed excellent ability to adjust the estimation period relative to the sensor property. As a result, when a three-axis gyro sensor and a three-axis acceleration sensor were adapted in the estimator, the RMS(Root Mean Square) estimation error in simulation was retained less than 1.7[$^{\circ}$], and the estimator displayed good property on the prediction of the state in 100 ms measurement period.

An investigation of normal range of tongue color in numerical coordinate (정상 설색의 수치적 기준에 관한 고찰)

  • Kim, Changhee;Kim, Kiwang
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.17 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • Objectives Although tongue diagnosis is one of major diagnostic methods in east Asian traditional medicine, the standard of normal tongue color have not established. So we tried to suggest the method to establish the standard of normal tongue color range and the pilot data about the normal range. Materials and methods: 22 precedent study papers that presented the numerical data of normal (light red) tongue color were analyzed. At the same time, 46 adult people tongue color data were also collected and analyzed. Results Precedent studies showed remarkable fluctuations of the range of normal tongue color. Collected tongue color data of the 46 people showed mean Hue value 2 and standard deviation 14 in HSB system. Additionally, 3 ways of standard establishment for normal tongue color were suggested. Conclusion We suggest statistical method as a reasonable method for tongue color standard establishment and $2{\pm}14$ as a reference Hue value for normal tongue color.

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.

Three-dimensional Kinematics of Knee Joint in a Complete Gait Cycle: A Comparative Study between Handball Players and Non-athletes

  • Dinesh, Paudel;Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • Objective: The purpose of this study is to investigate whether the athletic knee show greater rotation and translation movement than non-athletic knee during the treadmill walking with their preferred speed in a complete gait cycle. Method: Thirty young and healthy male subjects participated in the study, fifteen handball players (mean age: 19.6 ± 1.4 years old, mean weight: 85 ± 11.9 Kg, mean height: 179.8 ± 4.7) and fifteen non-athletes (mean age: 22.8 ± 1.2 years old, mean weight: 74.5 ± 8.6 Kg, mean height: 175 ± 5.9). Three-dimensional positional coordinate of lower limb during treadmill walking were analyzed. Results: There were significant differences (t (22.014)=1.585, p=0.127 in the range of internal and external rotation with mean value for handball player (M=14.4513, SD=2.3839) was higher than non-athletes (M=13.3327, SD=1.337). The magnitude of the difference in the means (mean difference=1.11867, 95% CI: -0.34489 to 2.5822) was significant. There were also significant differences (t (17.956)=1.654, p=0.116 in the max abduction and adduction with mean value for handball player (M=5.7160, SD=2.49281) was higher than non-athletes (M=4.5773, SD=0.94667). The magnitude of the difference in the means (mean difference=1.138, 95% CI: -0.30805 to 2.58539) was significant. At significance level 0.05. Conclusion: Finding of this study suggest that to understand the actual characteristic of knee motion studies have to be done in different walking and running trial at variable speed.

Vertex Normal Computation using Conformal Mapping and Mean Value Coordinates (등각사상과 평균값좌표계를 이용한 정점 법선벡터 계산법)

  • Kim, Hyoung-Seok B.;Kim, Ho-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.451-457
    • /
    • 2009
  • Most of objects in computer graphics may be represented by a form of mesh. The exact computation of vertex normal vectors is essential for user to apply a variety of geometric operations to the mesh and get more realistic rendering results. Most of the previous algorithms used a weight which resembles a local geometric property of a vertex of a mesh such as the interior angle, the area, and so on. In this paper, we propose an efficient algorithm for computing the normal vector of a vertex in meshes. Our method uses the conformal mapping which resembles synthetically the local geometric properties, and the mean value coordinates which may smoothly represent a relationship with the adjacent vertices. It may be confirmed by experiment that the normal vector of our algorithm is more exact than that of the previous methods.

Adaptive thresholding noise elimination and asymmetric diffusion spot model for 2-DE image analysis

  • Choi, Kwan-Deok;Yoon, Young-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.113-116
    • /
    • 2008
  • In this paper we suggest two novel methods for an implementation of the spot detection phase in the 2-DE gel image analysis program. The one is the adaptive thresholding method for eliminating noises and the other is the asymmetric diffusion model for spot matching. Remained noises after the preprocessing phase cause the over-segmentation problem by the next segmentation phase. To identify and exclude the over-segmented background regions, il we use a fixed thresholding method that is choosing an intensity value for the threshold, the spots that are invisible by one's human eyes but mean very small amount proteins which have important role in the biological samples could be eliminated. Accordingly we suggest the adaptive thresholding method which comes from an idea that is got on statistical analysis for the prominences of the peaks. There are the Gaussian model and the diffusion model for the spot shape model. The diffusion model is the closer to the real spot shapes than the Gaussian model, but spots have very various and irregular shapes and especially asymmetric formation in x-coordinate and y-coordinate. The reason for irregularity of spot shape is that spots could not be diffused perfectly across gel medium because of the characteristics of 2-DE process. Accordingly we suggest the asymmetric diffusion model for modeling spot shapes. In this paper we present a brief explanation ol the two methods and experimental results.

  • PDF

THREE-DIMENSIONAL COMPARISON OF FRAMEWORK DISPLACEMENTS JOINED BY VARIOUS CONNECTION TECHNIQUES (연결방법에 따른 주조체 변위에 관한 3차원적 비교연구)

  • Lim, Jang-Seop;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.358-374
    • /
    • 1999
  • This study measured the relative displacements of the five-unit fixed partial dentures as cast with the same fixed partial dentures sectioned and assembled by investment-soldering, solder-ing stand-soldering, and cast-joining techniques A total of fifteen specimens using a type IV gold alloy were one-piece cast as control and then sectioned and assembled five test specimens for each method were prepared. A computerized three dimensional coordinate measuring machine and specially designed cylinder for this study were used. Displacement was defined by six displacement variables for the each of cylinders incorporated in each casting: three component displacements(${\Delta}Lx,\;{\Delta}Ly,\;and\;{\Delta}Lz$) and rotational displacements(${\Delta}{\theta}x,\;{\Delta}{\theta}y,\;{\Delta}{\theta}z$). The global displacement was computed using the mathematical formula ${\Delta}R$ = Global displacement =$\sqrt{{(x'-x)}^2+{(y'-y)}^2+{(z'-z)}^2}$ Under the conditions of this study, the following conclusions were drawn: 1. The investment-soldering group showed the largest mean value of final global displacements, followed by stand-soldering group, cast-joining group and one-piece cast group. However, between the mean values of final global displacement for the cast-joining group and one-piece cast group, there was no significant difference. 2. For investment-soldering and stand-soldering groups, the greater global displacements were recorded in soldering phase than in indexing or investing phase. 3. For one-piece cast group, the displacements occured mostly in the casting phase. And for cast-joining group, there was no significant difference in global displacements among the fabricating procedures. 4. Intercentroidal distance decreased in framework-patterning, solder-indexing, solder-standing, and soldering phases, but increased in investment block-investing and casting phases. 5 Specially designed cylinder for touch-trigger type coordinate measuring machine was validated.

  • PDF

Measurement and Algorithm Calculation of Maxillary Positioning Change by Use of an Optoelectronic Tracking System Marker in Orthognathic Surgery (악교정수술에서 광전자 포인트 마커를 이용한 상악골 위치 변화의 계측 및 계산 방법 연구)

  • Park, Jong-Woong;Kim, Soung-Min;Eo, Mi-Young;Park, Jung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.233-240
    • /
    • 2011
  • Purpose: To apply a computer assisted navigation system to orthognathic surgery, a simple and efficient measuring algorithm calculation based on affine transformation was designed. A method of improving accuracy and reducing errors in orthognathic surgery by use of an optical tracking camera was studied. Methods: A total of 5 points on one surgical splint were measured and tracked by the Polaris $Vicra^{(R)}$ (Northern Digital Inc Co., Ontario, Canada) optical tracking system in two cases. The first case was to apply the transformation matrix at pre- and postoperative situations, and the second case was to apply an affine transformation only after the postoperative situation. In each situation, the predictive measuring value was changed to the final measuring value via an affine transformation algorithm and the expected coordinates calculated from the model were compared with those of the patient in the operation room. Results: The mean measuring error was $1.027{\pm}0.587$ using the affine transformation at pre- and postoperative situations and the average value after the postoperative situation was $0.928{\pm}0.549$. The farther a coordinate region was from the reference coordinates which constitutes the transform matrixes, the bigger the measuring error was found which was calculated from an affine transformation algorithm. Conclusion: Most difference errors were brought from mainly measuring process and lack of reproducibility, the affine transformation algorithm formula from postoperative measuring values by using of optic tracking system between those of model surgery and those of patient surgery can be selected as minimizing the difference error. To reduce coordinate calculation errors, minimum transformation matrices must be used and reference points which determine an affine transformation must be close to the area where coordinates are measured and calculated, as well as the reference points need to be scattered.