• Title/Summary/Keyword: Mean field equation

Search Result 150, Processing Time 0.026 seconds

BROUWER DEGREE FOR MEAN FIELD EQUATION ON GRAPH

  • Liu, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1305-1315
    • /
    • 2022
  • Let u be a function on a connected finite graph G = (V, E). We consider the mean field equation (1) $-{\Delta}u={\rho}\({\frac{he^u}{\int_Vhe^ud{\mu}}}-{\frac{1}{{\mid}V{\mid}}}\),$ where ∆ is 𝜇-Laplacian on the graph, 𝜌 ∈ ℝ\{0}, h : V → ℝ+ is a function satisfying minx∈V h(x) > 0. Following Sun and Wang [15], we use the method of Brouwer degree to prove the existence of solutions to the mean field equation (1). Firstly, we prove the compactness result and conclude that every solution to the equation (1) is uniformly bounded. Then the Brouwer degree can be well defined. Secondly, we calculate the Brouwer degree for the equation (1), say $$d_{{\rho},h}=\{{-1,\;{\rho}>0, \atop 1,\;{\rho}<0.}$$ Consequently, the equation (1) has at least one solution due to the Brouwer degree d𝜌,h ≠ 0.

Finite Element and Boundary Element Modelling of the Acoustic Wave Transmission in Mean Flow Medium

  • Tsuchiya, Takao;Kagawa, Yukio;Tsuji, Takuya
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.209-214
    • /
    • 2001
  • Acoustic field in steady-state is characterized by a Helmholtz equation. The transmission characteristics of acoustic wave devices is however influenced by the presence of the mean flow in the medium. The effect of the mean How introduces additional terms in the equation. In the present paper, two approaches are considered. One is that the equation is directly discretized by FEM for one-dimensional and the axisymmetric case. Another is that the equation is first transformed into the standard Helmholtz equation which is solved by BEM. The numerical demonstrations are made for the axisymmetric FEM and the three-dimensional BEM modeling. The numerical examination for a straight circular duct is first considered. The solutions are compared wish the analytical ones. The examination is then extended to the case when the mean How is locally present in a muser with expansion chamber.

  • PDF

Sparkover Voltage Estimation of Standard Sphere Gaps for Negative Polarity by Calculation of Ionization Index

  • Nishikori, Yasuo;Kojima, Soji;Kouno, Teruya
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.45-50
    • /
    • 2004
  • The field utilization factor (equation omitted) (the mean electric field / the maximum electric field) of standard sphere gaps was calculated by the charge simulation method, taking into account the ground plane and shanks. n changes mainly with g/r and slightly with 1$_1$, 1$_2$ and 1, where D=2r is the sphere diameter, g is the gap length, 1$_1$ and 1$_2$, respectively, are the lengths of the upper and lower shank, and t is the shank diameter. Generally, (equation omitted) increases as 1$_1$,1$_2$ and t each becomes larger. IEC standard 60052(2002) limits t$\leq$0.2D 1$_1$$\geq$1D and prescribes A=1$_2$+D+g where A is the height of the spark point on the upper sphere. Therefore, (equation omitted) is the largest when A=9D and the smallest when A=3D. The simple equation of a straight line, (equation omitted)=1- (g/3r), can generally be used as a representative value of (equation omitted) for a wide variety of sphere diameters that are permitted by the IEC standard. The maximum electric field E$_{m}$ at sparkover of standard air gaps has also been calculated by the relation E$_{m}$=V/(equation omitted)g). E$_{m}$ describes a U-curve for g/r, up to the sphere diameter of 1 m. Moreover, for 1.5-m and 2-m diameters and especially .for negative polarity, sparkover voltages have been calculated by integration of the ionization index.index.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

Simulation Study of Corona Discharge According to Flue Gas Conditions (배기가스 조건에 따른 코로나 방전 현상 시뮬레이션)

  • 정재우;조무현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.223-231
    • /
    • 2001
  • In order to provide some insights into the influence of electric field, gas composition, and gas temperature on electron energy distribution and electron transport characteristics, the Boltzmann equation was solved by using cross section data for electron collisions, Critical electric fields for the corona development in dry air and flue gas are 150 and 80 Td, respectively. It was seen that the decrease of critical electric field in flue gas is mainly caused by the $H_2O$ addition through the comparison of ionization and attachment coefficients of gas components. Increase of $O_2$, $H_2O$, and $CO_2$ contents in gas affected discharge characteristics according to their reciprocal characteristics between lowering the ionization threshold and increasing the electro-negativity. As electric field increases, electrons with higher energies in the electron energy distribution also increase. The mean and characteristic electron energies also linearly increase with electric field. The variation of flue gas temperature did rarely affect on the electron energy distribution function and electron transport characteristics, because the gas temperature is several hundreds or thousands times lower than the electron temperature.

  • PDF

유역 물수지조사를 위한 수문기상학적인 기초자료분석

  • 이광호
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.44-48
    • /
    • 1972
  • This article includes hydrometeorological analysis of evapotranspiration and precipitation, which are used available basic data for a certain basin water budget. Evapotranspiration on water surface, bare soil and rice fields is directly measured by Thornthwaite's type Lysimeter and on water surface and vegetables computed using the Penman's equation. Areal precipitation is analized through the Thiessen method and arithmatic mean method. It is interested fact that the correlation coefficient for Class A Pan's evaporation vs. the actual evapotranspiration is the highest value among the coefficients for different type evaporimeter and Penman equation, and evaporation ratio on rice field's evapotranspiration vs. Class A Pan's evaporation is 1. 5-2. 3.

  • PDF

CLASSIFICATIONS OF ROTATION SURFACES IN PSEUDO-EUCLIDEAN SPACE

  • Kim, Young-Ho;Yoon, Dae-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.379-396
    • /
    • 2004
  • In this article, we study rotation surfaces in the 4-dimensional pseudo-Euclidean space E$_2$$^4$. Also, we obtain the complete classification theorems for the flat rotation surfaces with finite type Gauss map, pointwise 1-type Gauss map and an equation in terms of the mean curvature vector. In fact, we characterize the flat rotation surfaces of finite type immersion with the Gauss map and the mean curvature vector field, namely the Gauss map of finite type, pointwise 1-type Gauss map and some algebraic equations in terms of the Gauss map and the mean curvature vector field related to the Laplacian of the surfaces with respect to the induced metric.

Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials (수중둔덕의 거동특성 해석을 위한 수학적 모형)

  • Choi, Han-kyu;Lee, Oh-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.