• Title/Summary/Keyword: Mean curvature

Search Result 361, Processing Time 0.024 seconds

ROTATIONAL HYPERSURFACES CONSTRUCTED BY DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN SPACE 𝔼5

  • Erhan Guler
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.585-597
    • /
    • 2023
  • We introduce the rotational hypersurface x = x(u, v, s, t) constructed by double rotation in five dimensional Euclidean space 𝔼5. We reveal the first and the second fundamental form matrices, Gauss map, shape operator matrix of x. Additionally, defining the i-th curvatures of any hypersurface via Cayley-Hamilton theorem, we compute the curvatures of the rotational hypersurface x. We give some relations of the mean and Gauss-Kronecker curvatures of x. In addition, we reveal Δx=𝓐x, where 𝓐 is the 5 × 5 matrix in 𝔼5.

Precise Terrain Torrection for Gravity Measurement Considering the Earth's Curvature (지구 곡률을 고려한 중력의 정밀 지형보정)

  • Choi, Kwang-Sun;Lee, Young-Cheol;Lim, Mu-Taek
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.825-837
    • /
    • 2007
  • The researchers compiled two sets of digital terrain data released by NORI (National Oceanographic Research Institute, Korea) and NIMA (National Imagery and Mapping Agency, USA) respectively and analyzed a new set of $3"{\times}3"$ gridded terrain data in order to calculate terrain correction value in gravity in and around the Korean Peninsula. Using this new set of terrain data, the researchers developed an effective algorithm to calculate precise terrain correction value in gravity considering Earth's curvature and coded a fortran program to evaluate terrain correction value covering the surface of which the radius reaches up to 166.735 km. The researchers also calculated terrain correction value over the southern part of Korea. According to the statistics of terrain correction value calculated in and around the Korean Peninsula up to 166.735 km of surface radius, the maximum value soars to 56.508 mGal and the mean value is 4.539 mGal.

The Analysis of the Lower Part of Dress Forms Using Three-Dimensional Measurement System (3차원 형상 계측에 의한 인대의 하반신 형태 파악)

  • Lee, Myung-Hee;Jung, Hee-Kyeong
    • Korean Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.303-312
    • /
    • 2005
  • The purpose of this research is to analyze the lower part of dress forms with different sectional rotation-angles ($e.g.\;9^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ}$) using three-dimensional measurement system and to investigate measurement properties for dress making. The dress forms used in this experiment were size 8 and six types: four from Korea and two from Japan. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner (Exyma-WBS2H). The analysis program used in this experiment was Rapid Form 2004 PP1 (INUS technology, Inc, Korea). The measurement of dress forms was done three times with different sectional rotation-angles and its data were analyzed using SPSS WIN 10.0 Package. The following results were obtained: 1. With mean and standard deviation of each measured part, it was found out that the dress forms from two countries were different in size per each part. For example, the Japanese one was relatively large in middle hip and hip, compared to the Korean one. 2. The 3D analysis of the sectional rotation-angles revealed some differences between the two dress forms in sectional length per each part. 3. With cluster analysis results, it was found that there were definite differences among measurements per each part, especially in $30^{\circ}\;and\;45^{\circ}$ sections. 4. The proportion of the dress forms showed significant differences in the curvature between center and side section of the lower parts. In addition, the shapes on the horizontal section map of the four levels (waist, middle hip, hip, and bottom) were analyzed.

  • PDF

Changes of Muscle Activity and Cephalometric Variables Related to Head Posture (두부자세에 따른 근활성과 측모두부방사선계측치의 변화에 관한 연구)

  • Kim, Byung-Wook;Han, Kyung-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.2
    • /
    • pp.189-206
    • /
    • 1999
  • This study was performed to investigate the factors affecting muscle activity and cephalometric variables according to change of head postures. For this study, 150 patients with temporomandibular disorders and 80 dental students without any signs and symptoms of temporomandibular disorders were selected as the patients group and as the normal group, respectively. Head position to body-midline in frontal plane and upper quarter posture to body plumb line in sagittal plane were observed clinically and electromyographic(EMG) activity of anterior temporalis, masseter, sternocleidomastoideus, and trapezius on clenching were recorded with $BioEMG^{(R)}$ in four head postures, which were natural head posture(NHP), forward head posture(FHP), $20^{\circ}$ upward head posture(UHP), and $20^{\circ}$ downward head posture(DHP). Cephaloradiographs were also taken in the same head postures as in EMG taking, but that was taken only in NHP for the patient group. Cephalometric variables measured were SN angle, CVT angle, atlas inclination angle, occlusal plane angle, Me-C2 angle, pharyngeal width, occiput~axis distance, area of pharyngeal space, and cervical curvature. The data were analyzed by SAS statistical program. The results of this study were as follows : 1. Between the patient and the normal group, there were significant difference in distance from plumb line to acromion, eye-tragus angle, electromyographic activity of the four muscles, and cephalometric variables of linear measurement. 2. There was no consistent pattern of correlation between upper quarter posture, EMG activity and cephalometric variables in any case without relation to cervical curvature and head position in frontal plane. 3. Sternocleidomastoid muscle only showed variation of electromyographic activty with changes of head postures, but all the muscles did show correlation with head postures. 4. All the cephalometric variables measured in this study showed difference of mean value by head posture, and CVT angle, pharyngeal width, occiput-atlas distance, and area of pharyngeal space showed correlation between these variables with change from NHP to FHP, and from NHP to UHP.

  • PDF

Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls (휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • The present study proposes a simple equation to straightforwardly determine the potential plastic hinge length in boundary element of reinforced concrete shear walls. From the idealized curvature distribution along the shear wall length, a basic formula was derived as a function of yielding moment, maximum moment, and additional moment owing to diagonal tensile crack. Yielding moment and maximum moment capacities of shear wall were calculated on the basis of compatability of strain and equilibrium equation of internal forces. The development of a diagonal tensile crack at web was examined from the shear transfer capacity of concrete specified in ACI 318-11 provision and then the additional moment was calculated using the truss mechanism along the crack proposed by Park and Paulay. The moment capacities were simplified from an extensive parametric study; as a result, the equivalent plastic hinge length of shear walls could be formulated using indices of longitudinal tensile reinforcement at the boundary element, vertical reinforcement at web, and applied axial load. The proposed equation predicted accurately the measured plastic hinge length, providing that the mean and standard deviation of ratios between predictions and experiments are 1.019 and 0.102, respectively.

Comparison of cyclic fatigue life of nickel-titanium files: an examination using high-speed camera

  • Ozyurek, Taha;Keskin, Neslihan Busra;Furuncuoglu, Fatma;Inan, Ugur
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.224-231
    • /
    • 2017
  • Objectives: To determine the actual revolutions per minute (rpm) values and compare the cyclic fatigue life of Reciproc (RPC, VDW GmbH), WaveOne (WO, Dentsply Maillefer), and TF Adaptive (TFA, Axis/SybronEndo) nickel-titanium (NiTi) file systems using high-speed camera. Materials and Methods: Twenty RPC R25 (25/0.08), 20 WO Primary (25/0.08), and 20 TFA ML 1 (25/0.08) files were employed in the present study. The cyclic fatigue tests were performed using a dynamic cyclic fatigue testing device, which has an artificial stainless steel canal with a $60^{\circ}$ angle of curvature and a 5-mm radius of curvature. The files were divided into 3 groups (group 1, RPC R25 [RPC]; group 2, WO Primary [WO]; group 3, TF Adaptive ML 1 [TFA]). All the instruments were rotated until fracture during the cyclic fatigue test and slow-motion videos were captured using high-speed camera. The number of cycles to failure (NCF) was calculated. The data were analyzed statistically using one-way analysis of variance (ANOVA, p < 0.05). Results: The slow-motion videos were indicated that rpm values of the RPC, WO, and TFA groups were 180, 210, and 425, respectively. RPC ($3,464.45{\pm}487.58$) and WO ($3,257.63{\pm}556.39$) groups had significantly longer cyclic fatigue life compared with TFA ($1,634.46{\pm}300.03$) group (p < 0.05). There was no significant difference in the mean length of the fractured fragments. Conclusions: Within the limitation of the present study, RPC and WO NiTi files showed significantly longer cyclic fatigue life than TFA NiTi file.

The Spatially Closed Universe

  • Park, Chan-Gyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.353-381
    • /
    • 2019
  • The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time, and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the world reference frame. The information that determines the kinematics of the geometry of the universe such as size and expansion rate has been included in the new metric. The Einstein's field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.

Transumbilical Single-Incision Laparoscopic Wedge Resection for Gastric Submucosal Tumors: Technical Challenges Encountered in Initial Experience

  • Park, Ji Yeon;Eom, Bang Wool;Yoon, Hongman;Ryu, Keun Won;Kim, Young-Woo;Lee, Jun Ho
    • Journal of Gastric Cancer
    • /
    • v.12 no.3
    • /
    • pp.173-178
    • /
    • 2012
  • Purpose: To report the initial clinical experience with single-incision laparoscopic gastric wedge resection for submucosal tumors. Materials and Methods: The medical records of 10 patients who underwent single-incision laparoscopic gastric wedge resection between July 2009 and March 2011 were reviewed retrospectively. The demographic data, clinicopathologic and surgical outcomes were assessed. Results: The mean tumor size was 2.5 cm (range, 1.2~5.0 cm), and the tumors were mostly located on the anterior wall (4/10) or along the greater curvature (4/10), of the stomach. Nine of ten procedures were performed successfully, without the use of additional trocars, or conversion to laparotomy. One patient underwent conversion to multiport laparoscopic surgery, to get simultaneous cholecystectomy safely. The mean operating time was 66.5 minutes (range, 24~132 minutes), and the mean postoperative hospital stay was 5 days (range, 4~7 days). No serious perioperative complications were observed. Of the 10 submucosal tumors, the final pathologic report revealed 5 gastrointestinal stromal tumors, 4 schwannomas, and 1 heterotopic pancreas. Conclusions: Single-incision laparoscopic gastric wedge resection for gastric submucosal tumors is feasible and safe, when performed by experienced laparoscopic surgeons. This technique provides favorable cosmetic results, and also short hospital stay and low morbidity, in carefully selected candidates.

Flow Characteristics of Two-Dimensional Turbulent Stepped Wall Jet (2次元 亂流 Stepped Wall Jet 의 流動特性)

  • 부정숙;김경천;박진호;강창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.732-742
    • /
    • 1985
  • Measurements of mean velocity and turbulence characteristics are obtained with a linearized constant temperature hot-wire anemometer in a two-dimensional turbulent jet discharging parallel to a flate. Wall static pressure distribution is also measure. The Reynolds number based on the jet nozzle width (D) is about 42,000 and the step height is 2.5D. The reattachment length is found to be 7.5D by using both wool tuft and oil methods. Upstream of the reattachment point, there exist double coherent structures and mean velocity, Reynolds stresses and triple product profiles are asymmetric about jet center line due to the influence of streamline curvature and recirculating flow region. Near the reattachment point, wall static pressure and turbulence quantities change its shape rapidly because of the large eddies by the solid wall. Especially, turbulence intensity has a maximum value in the reattachment regin, then decreases slowly in the redeveloping wall jet ragion. Downstream of X/D=14, a single large scale eddy structure is formed. Far downstream affer the reattachment(X/D.geq.18) mean velocity profile, the decay of maximum velocity and the variation of jet half width are nearly similar to those of plane wall jet, but the Reynolds stresses are higher than those of the latter.

Association between mandibular occlusal morphology and occlusal curvature (교합면의 해부학적 형태와 교합만곡의 연관성에 대한 연구)

  • Nam, Shin-Eun;Lee, Heekyung
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • Purpose: This study aimed to generate 3-D occlusal curvatures and evaluate the relationship between the occlusal curvatures and mandibular occlusal morphology factors. Methods: Mandibular dental casts from 25 young adult Korean were scanned as a virtual dental models with a 3-D scanner(Scanner S600, Zirkonzahn, Italy). The curve of Spee, curve of Wilson, and Monson's sphere were generated by fitting a circle/sphere to the cusp tips using a least-squares method. The mandibular mesiodistal cusp inclination, buccolingual cusp inclination, and tooth wear parameters were measured on the prepared virtual models using RapidForm2004(INUS technology INC, Seoul, Korea). Wilcoxon signed-rank test was performed to test side difference, and Spearman's rank correlation coefficients were investigated to verify the correlation between occlusal curvatures and correlated factors (a=0.05). Results: The mean radii of curve of Spee were $83.09{\pm}33.94$ in the left side and $79.00{\pm}28.12mm$ in the right side. The mean radii of curve of Wilson were $66.82{\pm}15.87mm$ in the mesial side and $47.87{\pm}9.40mm$ in the distal side with significantly difference between mesiodistal sides(p<0.001). The mean radius of Monson's sphere was $121.85{\pm}47.11mm$. Most of the cusp inclination parameters showed negative correlation for the radius of Monson' sphere(p<0.05). Especially, the buccolingual cusp inclinations in mesial side of molar showed high correlation coefficients among the factors(p<0.05). Conclusion: The radius of Monson's sphere was greater than the classical 4-inch values, and the buccolingual cusp inclinations in mesial side of molar can be considered as one of the main factors correlating with the radius of Monson's sphere.