• 제목/요약/키워드: Mean Shift 분석

검색결과 109건 처리시간 0.022초

컬러 영상 처리를 위한 Mean Shift 기법 개선 (Modified Mean Shift for Color Image Processing)

  • 황영철;배정호;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.407-410
    • /
    • 2009
  • 본 논문에서는 개선된 mean shift를 이용한 컬러 영상 분할을 소개한다. Mean shift는 Yizong Cheng에 의해 재조명되고 Dorin Comaniciu 등에 의해 정리되어 영상 필터링(image filtering), 영상 분할(image segmentation), 물체 추적(object tracking) 등 여러 응용 분야에 널리 활용되고 있다. 커널을 이용해 밀도를 추정하고 밀도가 가장 높은 점으로 커널을 연속적으로 이동함으로써 지역적으로 주요한 위치로 데이터 값을 갱신시킨다. 그러나 영상에 포함된 모든 화소에 대해 mean shift를 수행해야하기 때문에 연산 시간이 많이 소요되는 단점이 있다. 본 논문에서는 mean shift 필터링 과정을 분석하고 참조수렴방법과 강제수렴방법을 이용해 소요 시간을 단축시켰다. 모든 점에 대해 mean shift를 수행하는 대신 특정 조건을 만족하는 픽셀은 이웃 픽셀의 수렴 값을 참조하고, mean shift 과정에 진동 또는 미미한 이동을 계속하는 픽셀은 강제 수렴을 실시하였다. 개선된 방법과 기존의 mean shift 방식을 적용하여 영상 필터링과 영상 분할에 적용한 실험에서 결과 영상에는 차이가 적고 기존의 방법에 비해 수행 시간이 24% 정도 소요됨을 확인하였다.

  • PDF

Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할 (Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis)

  • 박안진;김정환;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.936-946
    • /
    • 2009
  • 그래프 컷(graph cuts) 방법은 주어진 사전정보와 각 픽셀간의 유사도를 나타내는 데이터 항(data term)과 이웃하는 픽셀간의 유사도를 나타내는 스무드 항(smoothness term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로, 최근 영상 분할에 많이 이용되고 있다. 기존 그래프 컷 기반의 영상 분할 방법에서 데이터 항을 설정하기 위해 GMM(Gaussian mixture model)을 주로 이용하였으며, 평균과 공분산을 각 클래스를 위한 사전정보로 이용하였다. 이 때문에 클래스의 모양이 초구(hyper-sphere) 또는 초타원(hyper-ellipsoid)일 때만 좋은 성능을 보이는 단점이 있다. 다양한 클래스의 모양에서 좋은 성능을 보이기 위해, 본 논문에서는 mean shift 분석 방법을 이용한 그래프 컷 기반의 자동 영상분할 방법을 제안한다. 데이터 항을 설정하기 위해 $L^*u^*{\upsilon}^*$ 색상공간에서 임의로 선택된 초기 mean으로부터 밀도가 높은 지역인 모드(mode)로 이동하는 mean의 집합들을 사전정보로 이용한다. Mean shift 분석 방법은 군집화에서 좋은 성능을 보이지만, 오랜 수행시간이 소요되는 단점이 있다. 이를 해결하기 위해 특징공간을 3차원 격자로 변형하였으며, mean의 이동은 격자에서 모든 픽셀이 아닌 3차원 윈도우내의 1차원 모멘트(moment)를 이용한다. 실험에서 GMM을 이용한 그래프 컷 기반의 영상분할 방법과 최근 많이 이용되고 있는 mean shift와 normalized cut기반의 영상분할 방법을 제안된 방법과 비교하였으며, Berkeley dataset을 기반으로 앞의 세 가지 방법보다 좋은 성능을 보였다.

Bilateral 필터와 Mean-Shift 알고리즘을 이용한 의상 색상 분석기법 (Clothing Color Analysis Techniques using Bilateral Filter and Mean-Shift Algorithm)

  • 김혜민;정창성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1413-1415
    • /
    • 2015
  • 본 논문에서 우리는 의상영역의 유사성을 검사 시 색상분석에 있어 정확도를 향상시키기 위해 Bilateral 필터와 Mean-Shift 알고리즘을 적용하였다. 본 연구의 평가부분에서 필터를 적용한 영상이 의상영역의 구김이나 빛에 의한 영향이 필터를 적용하지 않은 영상보다 적다는 것을 실험을 통해 증명한다.

Mean Shift를 이용한 교차로 교통량 측정 시스템 개발 (The Development of Vehicle Counting System at Intersection Using Mean Shift)

  • 천인국
    • 한국ITS학회 논문지
    • /
    • 제7권3호
    • /
    • pp.38-47
    • /
    • 2008
  • 비디오 카메라에서 입력된 동영상을 분석하여 교차로에서 교통량을 자동적으로 측정하는 시스템을 설계, 구현하였다. 입력 영상에서 배경과 전경을 분리하기 위하여 3가지 방법을 비교 분석하였으며 이중에서 좋은 결과를 보여주는 Li의 방법을 선택하였다. 전경 영상에서 연결 성분 분석을 이용하여 각각의 블로브들을 분리하였으며 분리된 블로브들은 블로브 추적기를 이용하여 프레임 별로 추적된다. 가장 기본적인 추적기는 블로브의 크기와 위치 정보들을 이용한다. 블로브들 간에 충돌이 있는 경우에는 블로브 안의 컬러 분포를 이용하는 mean shift 알고리즘이 사용되었다. 제안된 시스템은 실제 교차로 동영상을 이용하여 테스트되었으며 휴리스틱을 추가할 경우, 좋은 감지율과 오차율을 보였다.

  • PDF

효율적인 비디오 카투닝을 위한 인터랙티브 시스템 (Interactive System for Efficient Video Cartooning)

  • 홍성수;윤종철;이인권
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.859-864
    • /
    • 2006
  • Mean shift 는 데이터의 특징을 잘 살려내는 None-parametric 방법으로, 특히 영상처리분야에서 많은 각광을 받아왔다. 하지만 좋은 결과를 보장하는 뛰어난 성능에도 불구하고, 높은 메모리소요와 긴 처리시간에 기인하여, 비디오처리 등의 분야에 적용하기엔 현실적인 제약점이 있다. 상기한 제약점을 극복하기 위해, 본 시스템은 비디오를 분석하여 전경과 후경으로 나눈다. 본 논문은 전경으로 분류된 부분에 대해 각 분리된 개체를구분하고, 좌표변환(coordinate shift)을 실행하여 연산을 할 비디오의 연산의 규모를 줄이는 방법론을 제시한다. 이러한 처리로 매우 많은 처리시간이 단축됨을 실험을 통해 알 수 있었다. 다음으로, 나뉘어진 전경에 3D mean shift를 적용하여 생성된 결과물에 대하여 3D cluster data structure 를 생성하고, 이를 이동하여 인터랙티브 에디팅이 가능하도록 하였다. 후경으로 나뉜 데이터는 이미지 한 장으로 축약이 되며, 2D mean shift 기반의 interactive cartooning system 을 통하여 만화화가 된다. 본 논문은 만화 특유의 단순한 톤을 표현하기 위해, 세밀한 분할이 필요한 부분과 그렇지 않은 부분을 따로 구분하여 처리하는 레이어처리방법을 제안한다. 위의 과정을 여러 실사이미지에 적용, 실험해본 결과 기존의 연구결과에 비해 매우 짧은 시간 내에 대상의 특징이 잘 나타낸 양질의 결과물이 생성되었다. 이러한 결과물은 출판, 영상편집분야 등 여러 분야에서 요긴하고 간편하게 사용될 수 있을 것으로 생각된다.

  • PDF

확대인자를 이용한 허용차 분석법의 타당성 평가 (On Tolerance Analysis Using Inflation Factors)

  • 서순근;조유희
    • 품질경영학회지
    • /
    • 제33권3호
    • /
    • pp.91-104
    • /
    • 2005
  • Tolerance analysis plays an important role in design and manufacturing stages for reducing manufacturing cost by improving producibility. In most production processes encountered in practice, a process mean may shift or drift in the long run although process is in control. This study discusses the feasibility of three most common inflation factors(Bender, Gilson and Six Sigma) as a correction to Root Sum of Squares(RSS) method to compensate heuristically for a shift of process mean and nonnormal component distributions from simulation experiments and proposes the guidelines for choosing the inflation factor.

신경망과 Mean-shift를 이용한 눈 추적 (Eye Tracking Using Neural Network and Mean-shift)

  • 강신국;김경태;신윤희;김나연;김은이
    • 전자공학회논문지CI
    • /
    • 제44권1호
    • /
    • pp.56-63
    • /
    • 2007
  • 본 논문은 신경망 (neural network: NN)과 mean-shift알고리즘을 이용하여 복잡한 배경에서 사용자의 눈을 정확히 추출하고 추적할 수 있는 눈 추적 시스템을 제안한다. 머리의 움직임에 강건한 시스템을 개발하기 위해서 먼저 피부색 모델과 연결 성분분석을 이용하여 얼굴영역을 추출한다. 그 다음 신경망기반의 텍스처 분류기를 이용하여 얼굴 영역(face region)을 눈 영역(eye region)과 비눈 영역(non-eye region)으로 구분함으로써 눈을 찾는다. 이러한 눈 검출 방법은 안경의 착용 유무에 상관없이 사용자의 눈 영역을 정확히 검출 할 수 있게 한다. 일단 눈 영역이 찾아지면 이후 프레임에서의 눈 영역은 mean-shift알고리즘에 의해 정확하게 추적된다. 제안된 시스템의 효율성을 검증하기 위해서 제안된 시스템은 눈의 움직임을 이용한 인터페이스 시스템에 적용되었고, 이 인터페이스를 이용한 'aliens game'이 구현되었다. 25명의 사용자에 대해 실험한 결과는 제안된 시스템이 보다 편리하고 친숙한 인터페이스로 활용될 수 있다는 것을 보여주었으며, 또한 $320{\times}240$ 크기의 영상을 초당 30프레임의 빠른 속도로 처리함으로써 실시간 시스템에 적용될 수 있음을 보여주었다.

가중 컬러 중심 이동을 이용한 물체 추적 알고리즘 (Object Tracking Algorithm Using Weighted Color Centroids Shifting)

  • 최은철;이석호;강문기
    • 방송공학회논문지
    • /
    • 제15권2호
    • /
    • pp.236-247
    • /
    • 2010
  • 최근 평균이동(mean shift) 알고리즘과 같은 커널 기반의 추적 알고리즘이 활발하게 연구되고 있다. 이러한 방식의 알고리즘은 커널이 제공하는 컬러 히스토그램 정보와 약간의 공간적 정보를 이용하는 방식으로 적은 연산량으로 추적을 수행할 수 있는 장점을 지니고 있다. 그러나 공간성을 확보하기 위한 등방성 커널과 유사성을 비교하기 위한 바타차야 계수를 사용하기 때문에 발생하는 불안정성이 존재한다. 본 논문은 커널과 바타차야 계수의 사용이 왜 알고리즘의 불안정성을 야기 시킬 수 있는지에 대해 분석한다. 또한 이 분석을 바탕으로 새로운 추적 알고리즘을 제안한다. 제안한 알고리즘은 표적을 구성하는 컬러별 중심을 이용하는 방법으로 표적의 컬러, 컬러별 화소의 빈도, 공간적 정보 등이 반영된다. 제안한 방법은 평균 이동 방법보다 결과의 오류 비율이 적으며, 다음 프레임에서의 표적 위치가 반복 없이 한차례의 연산으로 얻어진다. 또한, 낮은 프레임 율 및 일부 폐색이 발생하여 평균 이동 방법으로는 실패하는 상황에서도 성공적으로 동작한다.

적외선 연속 영상에서 다중 소형 표적 추적 알고리즘 (Multi-Small Target Tracking Algorithm in Infrared Image Sequences)

  • 주재흠
    • 융합신호처리학회논문지
    • /
    • 제14권1호
    • /
    • pp.33-38
    • /
    • 2013
  • 본 논문은 적외선 연속 영상에서 배경 추정 필터와 칼만 필터, 평균 이동 알고리즘을 사용하여 다중 소형 표적들의 소멸과 생성시에도 표적들의 위치를 추적하는 시스템을 제안한다. 배경 추정 영상파 원 영상과의 차 영상을 사용해서 정지 영상에서의 표적 후 정보를 구하고, 칼만 필터와 후보 표적의 분류를 이용하여 다중 표적을 추적 한다. 마지막으로 평균 이동 알고리즘을 사용하여 표적들의 세부 위치를 조정한다. 실험을 통하여 배경 추정 필터들의 성능을 비교 분석하였고, 제안하는 알고리즘이 기존의 추적 시스템과 비교하여 안정적으로 추적이 됨을 확인하였다.