• Title/Summary/Keyword: Mean Kinetic Energy

Search Result 193, Processing Time 0.022 seconds

Prediction of a Backward-Facing Step Flow with Modified Turbulence Models (수정 난류모델에 의한 후향계단 유동예측)

  • 명현국;백인철;한화택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

A Study on the Influence of Turbulent Intensity on DOHC Engine Performance (DOHC 가솔린기관의 연소실 난류특성이 기관성능에 미치는 영향에 관한 연구)

  • Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.12-23
    • /
    • 1994
  • In order to investigate the effect of turbulent intensity on combustion characteristics, new flame factor model was developed. The principal study is the evaluation of interaction of swirl, tumble and unstrutural component of flow characteristics and correlation between turbulent intensity and flame factor. Computational and experimental study has been, performed such as quasi-dimensional cycle simulation, three dimensional flow analysis, engine performance test and diagnostic simulation. From these studies, it was found that flame factor was a function of engine speed and turbulent intensity.

  • PDF

Experimental Study on the Flow Behind an Axisymmetric Backward-Facing Step (축대칭 하향단 흐름에 대한 실험적 연구)

  • 김경천;부정숙;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2463-2476
    • /
    • 1994
  • Local mean fluctuating velocity components were measured in the separating and reattaching axisymmetrc region of turbulent boundary layer over the wall of convex cylinders placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. Measurements were made with three different diameters of cylinders with four different diameters of cylinders with four different diameter of the obstructions. The range of Reynolds number based on step height was between 5,000 to 25,200. The study demonstrates that the reattachment length decreases with decreasing cylinder radius and is always shorter than that for the two-dimensional backward-facing step flow at the condition of the same step height. It was also observed that the turbulent kinetic energy in the recirculating region increases with an increases in the radius of convex curvature. The measured velocity field suggests that the transverse curvature can effect definitely the formation of corner eddy.

Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model (대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Lee, Deuck-Soo;Boo, Jung-Sook
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.579-584
    • /
    • 2000
  • Algebraic Reynolds Stress (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the model's predictability. The applied numerical schemes are upwind scheme and skew-upwind scheme. The numerical results show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show slight deviations in second order (i.e., kinetic energy and turbulence intensity). By comparison with the previous results using $k-{\varepsilon}$ model, ARS model predicts better than the standard $k-{\varepsilon}$ model, however, predicts slightly worse than the $k-{\varepsilon}$ model including the streamline curvature modification. Additionally this study can reconfirm that skew-upwind scheme has approximately 25% improved predictability than upwind scheme.

  • PDF

Evaluation of Nonlinear Models on Predicting Turbulence-Driven Secondary Flow (난류에 의해 야기되는 이차유동 예측에 관한 비선형 난류모형의 평가)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1814-1820
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear ${\kappa}-{\epsilon}$ models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

Development of νt-κ-γ Turbulence Model for Computation of Turbulent Flows (난류유동 해석을 위한 νt-κ-γ 모델의 개발)

  • Choi, Won-Chul;Seo, Young-Min;Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1014-1021
    • /
    • 2009
  • A new eddy viscosity equation was formulated from assumption of turbulence length scale equation and specific dissipation ratio equation. Then, a set of turbulence model equations for the turbulent kinetic energy ${\kappa}$, the viscosity ${\nu}_t$, and the intermittency factor ${\gamma}$ is proposed by considering the entrainment effect. Closure coefficients are determined by experimental data and resorting to numerical optimization. Present model has been applied to compute four representative cases of free shear flows and successfully compared with experimental data. In particular, the spreading rate, the centreline mean velocity and the profiles of intermittency are calculated with improved accuracy. Also, the proposed ${\nu}_t-{\kappa}-{\gamma}$ model was applied to channel flow by considering the wall effect and the results show good agreements with the Direct Numerical Simulation data.

An Experimental Study on the Spray Characteristics of Internal Mixing Atomizer for Twin Fluid (내부혼합형 2유체 미립화기의 분무 특성에 관한 실험적 연구)

  • Kim, K.C.;Ha, M.H.;NamKung, J.H.;Lee, S.G.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.693-698
    • /
    • 2001
  • An experimental study was carried out with an aerated nozzle. This nozzle was well known that the performance of the atomization is better than other ones even though the supplied air pressure is lower than that of them. The purpose of this investigation is to provide the essential information of the aerated nozzle from the nozzle exit. The experimental work was performed in order to analyze the characteristics of the overall flow field from the nozzle exit. The 2-D PDPA system was used to acquire the data in the concerned region. The characteristics of the mean velocity distribution, half-width, and SMD were mainly analyzed. Also the correlation between turbulent kinetic energy and SMD was described with ALR.

  • PDF

Measurement of Flow Field in a Domestic Boiler Circulation Pump by PIV (PIV에 의한 가정용보일러용 순환펌프의 내부 유동장 계측)

  • Im, Y.C.;Kim, J.H.;Choi, M.S.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.13-19
    • /
    • 1999
  • The purpose of the present experimental study is to apply multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to high-speed flow region within a domestic boiler circulation pump. Two different kinds of flow rate($27{\ell}/min,\;19{\ell}/min$)are selected as experimental condition. A volute casing and Impeller made of transparent Polycarbonate were made for the easy access of the illumination laser via fiber optical line and cylinder lens assembly to the measuring region. A CCD camera is syncronized with AOM to acquire clear original particle images. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. The instantaneous and time-mean velocity distribution, velocity profile and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a commercial circulation pump.

  • PDF

Mean Flow and Variability at the Upper Portion of the East Sea Proper Water in the southwestern East Sea with APEX Floats

  • Lee, Ho-Man;Kim, Tae-Hee;Kim, Ju-Ho;Youn, Yong-Hoon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.145-150
    • /
    • 2003
  • 16 APEX floats, autonomous profiling floats deployed as part of the Array for Real-time Geostrophic Oceanography (ARGO) program, are used to understand the currents at 800 m underwater in the southwestern East Sea. The flow penetrates into the Ulleung basin (UB) through two paths: an extension of the southward flowing the North Korean Cold Water along the east coast of Korea and between Ulleung Island and Dok island. Flows at 800 m are observed range 0.2 to 4.29 cm/sec and the variability in the north in the DB is stronger than that in the south. The eddy kinetic energy is found a few $cm^{2}$ $S^{-2}$. In the UB, cyclonic flows from 0.3 - 1.6 cm/see are observed with the bottom topography.

  • PDF

Investigation on Flow Structure behind Circular and Elliptical Ring by Particle Image Velocimetry (PIV 속도장 측정기법을 이용한 링 후류 유동구조에 대한 실험적 연구)

  • Kim, Seung-Gon;Kim, Seok;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.312-315
    • /
    • 2008
  • The flow structure behind circular and elliptical type rings embedded in a cross-flow was investigated experimentally using two-frame particle image velocimetry (PIV). The experiments were performed in a circulating water channel with a test section of 0.35m height ${\times}$ 0.3m width ${\times}$ 1.1m length. PIV measurements were carried out with varying the Reynolds number in the range of 4.5 ${\times}$ $10^2$ - 4.5 ${\times}$ $10^3$. In the present study, turbulent flow structures in the stream-wise direction and span-wise direction were investigated. The mean velocity field distribution was obtained by statistical-averaging instantaneous velocity fields. The spatial distributions of turbulent statistics such as turbulent intensities and turbulent kinetic energy were also investigated.

  • PDF