• Title/Summary/Keyword: McMurray Formation

Search Result 5, Processing Time 0.022 seconds

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Fluid-mud deposits in the Early Cretaceous McMurray Formation, Alberta, Canada (캐나다 앨버타주 전기 백악기 맥머레이층의 유성이토 퇴적층)

  • Oh, Juhyeon;Jo, Hyung Rae
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.477-488
    • /
    • 2018
  • Fluid muds commonly occur in estuarine environments, but their ancient examples have rarely been studied in terms of depositional characteristics and processes. Cores of estuarine channel deposits of the Early Cretaceous McMurray Formation, Alberta, Canada show various mudstone layers that possess depositional characteristics of high clay-concentration flows. These mudstone layers are examined in detail through microscopic observation of thin sections and classified into three microfacies (<1 to 25 mm thick) on the basis of sedimentary texture and structures. Structureless mudstone (Microfacies 1) consists mainly of clay particles and contains randomly dispersed coarser grains (coarse silt to fine sand). This microfacies is interpreted as being deposited by cohesive mud flows, i.e., fluid muds, which possessed sufficient strength to support suspended coarser grains (quasi-laminar plug flow). Silt-streaked mudstone (Microfacies 2) mainly comprises mudstone with dispersed coarse grains and includes very thin, discontinuous silt streaks of coarse-silt to very-fine-sand grains. The texture similar to Microfacies 1 indicates that Microfacies 2 was also deposited by cohesive fluid muds. The silt streaks are, however, suggestive of the presence of intermittent weak turbulence under the plug (upper transitional plug flow). Heterolithic laminated mudstone (Microfacies 3) is characterized by alternation of relatively thick silt laminae and much thinner clay laminae. It is either parallel-laminated or low-angle cross-laminated, occasionally showing low-amplitude ripple forms. The heterolithic laminae are interpreted as the results of shear sorting in the basal turbulent zone under a cohesive plug. They may represent low-amplitude bed-waves formed under lower transitional plug flows. These three microfacies reflect a range of flow phases of fluid muds, which change with flow velocities and suspended mud concentrations. The results of this study provide important knowledge to recognize fluid-mud deposits in ancient sequences and to better understand depositional processes of mudstones.

Reservoir Characterization using 3-D Seismic Data in BlackGold Oilsands Lease, Alberta Canada

  • Lim, Bo-Sung;Song, Hoon-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.35-45
    • /
    • 2009
  • Reservoir Characterization (RC) using 3-D seismic attributes analysis can provide properties of the oil sand reservoirs, beyond seismic resolution. For example, distributions and temporal bed thicknesses of reservoirs could be characterized by Spectral Decomposition (SD) and additional seismic attributes such as wavelet classification. To extract physical properties of the reservoirs, we applied 3-D seismic attributes analysis to the oil sand reservoirs in McMurray formation, in BlackGold Oilsands Lease, Alberta Canada. Because of high viscosity of the bitumen, Enhanced Oil Recovery (EOR) technology will be necessarily applied to produce the bitumen in a steam chamber generated by Steam Assisted Gravity Drainage (SAGD). To optimize the application of SAGD, it is critical to identify the distributions and thicknesses of the channel sand reservoirs and shale barriers in the promising areas. By 3-D seismic attributes analysis, we could understand the expected paleo-channel and characteristics of the reservoirs. However, further seismic analysis (e.g., elastic impedance inversion and AVO inversion) as well as geological interpretations are still required to improve the resolution and quality of RC.

  • PDF

오일샌드 저류층 지질특성화를 위한 기초연구 소개

  • Choe, Jae-Yong;Kim, Dae-Seok;Gwon, Lee-Gyun;Jeong, Gong-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.106-106
    • /
    • 2010
  • 오일샌드는 비투멘(bitumen), 물, 점토, 모래의 혼합체로 이루어진 비재래형 탄화수소 자원으로 세계적인 고유가 시대에 큰 관심을 받고 있는 석유자원 중 하나이다. 오일샌드는 대부분이 캐나다 앨버타주에 분포하고 있으며 주요 저류층으로는 아스바스카(Athabasca), 콜드레이크(Cold Lake) 지역의 멕머레이층(McMurray Formation), 클리어워터층(Clearwater Formation), 그랜드래피드층(Grand Rapid Formation)과 피스리버(Peace River) 지역의 블루스카이층(Bluesky Formation), 게팅층(Gathing Formation)이 있다. 오일샌드 저류층은 고생대 탄산염 기반암 위에 하성-에스츄어리에 이르는 다양한 퇴적환경에서 형성되어 매우 복잡한 지질특성이 나타난다. 오일샌드 저류층의 효율적인 개발을 위해서는 저류층의 복잡한 지질학적 특성의 이해가 반드시 필요하다. 본 연구에서 캐나다 오일샌드 시추코어 분석 DB, 물리검층 자료, 현장 및 현생 시추코어를 통하여 오일샌드 저류층의 지질특성화 정보의 도출을 시도하였다. 우선 캐나다 앨버타 전역에 분포하는 시추공의 기본 정보(표고, 위경도, 층서별 최상부 심도, 생산광구명, 광구개발업체)를 제공하는 AccuMap DB 프로그램을 이용하여 광역적인 오일샌드 저류층의 분포 특성을 이해하고자 주요층서에 대한 고지형도 및 층후도를 생산광구별로 도면화하여 분석하였다. 또한 캐나다 ENCANA사와 국제공동연구의 일환으로 확보된 크리스티나 레이크(Christina Lake)광구의 현장 시추코어를 이용하여 코어의 상세기재, 비파괴 물성측정, 입도/비투멘 함유량 분석과 같은 다양한 실내 시추코어분석 실험을 수행 중이다. 비파괴 물성측정은 현장 시추코어의 물리적/화학적 특성을 파악하고자 MSCL(Multi sensor core logger)과 XRF 코어 스캐너(X-ray fluorescence core scaner)를 통해 이루어지며, 분석결과로 시추코어의 감마밀도(gamma density), P파 속도(P-wave velocity), 전기비저항(resistivity), 대자율(magnetic susceptibility) 및 색지수의 물성과 정량적 화학조성을 측정한다. 현장 시추코어의 일부는 유기용매를 이용하여 퇴적물 내의 비투멘을 완전히 추출하고 퇴적물 입도와 저류층 비투멘 함유량 측정에 이용되었다. 현장 시료 분석 결과들은 물리검층 자료와 대비를 통하여 저류층의 지질특성을 규명하는 연구에 이용될 예정이다. 마지막으로 오일샌드의 현생 유사 퇴적환경으로 알려진 서해 경기만 조간대에서 시추코어 퇴적물을 획득하여 상세 기재하였으며, 이를 통해 오일샌드 저류층의 퇴적 모델을 제시하고자 퇴적층서 연구를 진행 중이다. 향후 오일샌드 관련 시추코어의 분석 결과들이 종합되면 기존 보다 비투멘 회수효율을 향상시킬 수 있는 정밀한 오일샌드 저류층 지질모델을 수립할 수 있을 것으로 기대된다.

  • PDF

A Characterization of Oil Sand Reservoir and Selections of Optimal SAGD Locations Based on Stochastic Geostatistical Predictions (지구통계 기법을 이용한 오일샌드 저류층 해석 및 스팀주입중력법을 이용한 비투멘 회수 적지 선정 사전 연구)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.313-327
    • /
    • 2013
  • In the study, three-dimensional geostatistical simulations on McMurray Formation which is the largest oil sand reservoir in Athabasca area, Canada were performed, and the optimal site for steam assisted gravity drainage (SAGD) was selected based on the predictions. In the selection, the factors related to the vertical extendibility of steam chamber were considered as the criteria for an optimal site. For the predictions, 110 borehole data acquired from the study area were analyzed in the Markovian transition probability (TP) framework and three-dimensional distributions of the composing media were predicted stochastically through an existing TP based geostatistical model. The potential of a specific medium at a position within the prediction domain was estimated from the ensemble probability based on the multiple realizations. From the ensemble map, the cumulative thickness of the permeable media (i.e. Breccia and Sand) was analyzed and the locations with the highest potential for SAGD applications were delineated. As a supportive criterion for an optimal SAGD site, mean vertical extension of a unit permeable media was also delineated through transition rate based computations. The mean vertical extension of a permeable media show rough agreement with the cumulative thickness in their general distribution. However, the distributions show distinctive disagreement at a few locations where the cumulative thickness was higher due to highly alternating juxtaposition of the permeable and the less permeable media. This observation implies that the cumulative thickness alone may not be a sufficient criterion for an optimal SAGD site and the mean vertical extension of the permeable media needs to be jointly considered for the sound selections.