DOI QR코드

DOI QR Code

Fluid-mud deposits in the Early Cretaceous McMurray Formation, Alberta, Canada

캐나다 앨버타주 전기 백악기 맥머레이층의 유성이토 퇴적층

  • Oh, Juhyeon (Department of Earth and Environmental Sciences, Andong National University) ;
  • Jo, Hyung Rae (Department of Earth and Environmental Sciences, Andong National University)
  • 오주현 (안동대학교 지구환경과학과) ;
  • 조형래 (안동대학교 지구환경과학과)
  • Received : 2018.10.16
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

Fluid muds commonly occur in estuarine environments, but their ancient examples have rarely been studied in terms of depositional characteristics and processes. Cores of estuarine channel deposits of the Early Cretaceous McMurray Formation, Alberta, Canada show various mudstone layers that possess depositional characteristics of high clay-concentration flows. These mudstone layers are examined in detail through microscopic observation of thin sections and classified into three microfacies (<1 to 25 mm thick) on the basis of sedimentary texture and structures. Structureless mudstone (Microfacies 1) consists mainly of clay particles and contains randomly dispersed coarser grains (coarse silt to fine sand). This microfacies is interpreted as being deposited by cohesive mud flows, i.e., fluid muds, which possessed sufficient strength to support suspended coarser grains (quasi-laminar plug flow). Silt-streaked mudstone (Microfacies 2) mainly comprises mudstone with dispersed coarse grains and includes very thin, discontinuous silt streaks of coarse-silt to very-fine-sand grains. The texture similar to Microfacies 1 indicates that Microfacies 2 was also deposited by cohesive fluid muds. The silt streaks are, however, suggestive of the presence of intermittent weak turbulence under the plug (upper transitional plug flow). Heterolithic laminated mudstone (Microfacies 3) is characterized by alternation of relatively thick silt laminae and much thinner clay laminae. It is either parallel-laminated or low-angle cross-laminated, occasionally showing low-amplitude ripple forms. The heterolithic laminae are interpreted as the results of shear sorting in the basal turbulent zone under a cohesive plug. They may represent low-amplitude bed-waves formed under lower transitional plug flows. These three microfacies reflect a range of flow phases of fluid muds, which change with flow velocities and suspended mud concentrations. The results of this study provide important knowledge to recognize fluid-mud deposits in ancient sequences and to better understand depositional processes of mudstones.

유성이토는 현생 염하구 환경에서 흔히 발달하지만, 고기의 퇴적층에서 보고되고 퇴적학적으로 연구된 예는 드물다. 캐나다 앨버타주의 전기 백악기 맥머레이층에서 시추한 염하구 하도 퇴적층 내의 여러 이암층들은 고농도부유점토류에 의한 퇴적특징을 보인다. 이러한 이암층들을 현미경으로 자세히 관찰하여 3개의 미퇴적상(microfacies, <1~25 mm 두께)으로 구분하였다. 미퇴적상 1은 무구조의 이암(structureless mudstone)으로 주로 점토 입자로 구성되고 무질서하게 분포하는 조립질 입자(조립질 실트~세립질 모래)들을 포함한다. 조립질 입자들을 지지할 수 있는 양력을 지닌 점착성의 이토류, 즉 유성이토가 정지하여 미퇴적상 1이 퇴적된 것으로 해석된다(quasi-laminar plug flow). 미퇴적상 2는 실트엽층을 포함하는 이암(silt-streaked mudstone)으로 산재한 조립질 입자를 포함하는 이암으로 구성되며, 불연속적이고 매우 얇은 실트엽층을 포함한다. 미퇴적상 1과 유사한 조직을 보이므로, 미퇴적상 2도 점착성의 유성이토에 의해 퇴적된 것으로 해석된다. 하지만 불연속적인 실트엽층은 plug 아래에 간헐적이고 약한 난류운동이 있었음을 제시한다(upper transitional plug flow). 미퇴적상 3은 이질 엽층리의 이암(heterolithic laminated mudstone)으로 실트엽층과 점토엽층의 교호로 구성되며, 평행엽층리 또는 저각도 사엽층리를 보이고 간혹 낮은 기복의 연흔 형태를 보인다. 이질 엽층리는 점착성 plug 아래의 난류층에서 입자크기에 따른 분급작용이 일어났음을 지시하며, lower transitional plug flow 아래에서 발달하는 낮은 층면구조에 의해 형성되었을 것으로 해석된다. 이 미퇴적상들은 유속과 부유이토농도에 따라 달라지는 유성이토의 여러 가지 상을 나타낸다고 볼 수 있다. 다른 지역에서 유성이토층을 인지하고 이암의 퇴적작용을 보다 잘 이해하는데 본 연구의 결과가 중요한 지식을 제공하리라 생각된다.

Keywords

Acknowledgement

Supported by : 안동대학교

References

  1. Alberta Energy and Utilities Board (AEUB), 2007, Alberta's Energy Reserves 2006 and Supply/Demand Outlook 2007-2016. ST98-2007, Alberta Energy and Utilities Board, Calgary, 218 p.
  2. Allen, G.P., Salomon, J.C., Bassoullet, P., Du Penhoat, Y. and De Grandpre, C., 1980, Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology, 26, 69-90. https://doi.org/10.1016/0037-0738(80)90006-8
  3. Baas, J.H. and Best, J.L., 2002, Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. Journal of Sedimentary Research, 72, 336-340. https://doi.org/10.1306/120601720336
  4. Baas, J.H., Best, J.L. and Peakall, J., 2011, Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows. Sedimentology, 58, 1953-1987. https://doi.org/10.1111/j.1365-3091.2011.01247.x
  5. Baas, J.H., Best, J.L. and Peakall, J., 2016, Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society, London, 173, 12-45. https://doi.org/10.1144/jgs2015-024
  6. Baas, J.H., Best, J.L., Peakall, J. and Wang, M., 2009, A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79, 162-183. https://doi.org/10.2110/jsr.2009.025
  7. Cant, D.J., 1996, Sedimentological and sequence stratigraphic organization of a foreland clastic wedge, Mannville Group, Western Canada Basin. Journal of Sedimentary Research, 66, 1137-1147.
  8. Crerar, E.E. and Arnott, R.W.C., 2007, Facies distribution and stratigraphic architecture of the Lower Cretaceous McMurray Formation, Lewis Property, northeastern Alberta. Bulletin of Canadian Petroleum Geology, 55, 99-124. https://doi.org/10.2113/gscpgbull.55.2.99
  9. Dalrymple, R.W. and Choi, K.S., 2003, Sediment transport by tidal currents. In: Middleton, G.V. (ed.), Encyclopedia of Sediments and Sedimentary Rocks. Kluwer Academic Publishers, Dordrecht, 606-609.
  10. Dalrymple, R.W. and Choi, K.S., 2007, Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81, 135-174. https://doi.org/10.1016/j.earscirev.2006.10.002
  11. Dyer, K.R., 1995, Sediment transport processes in estuaries. In: Perillo, G.M.E. (ed.), Geomorphology and Sedimentology of Estuaries. Elsevier, Amsterdam, 423-449.
  12. Flach, P.D., 1984, Oil Sands Geology-Athabasca deposit north. Bulletin 46, Alberta Research Council, Edmonton, 31 p.
  13. Flach, P.D. and Mossop, G.D., 1985, Depositional environments of Lower Cretaceous McMurray Formation, Athabasca oil sands, Alberta. The American Association of Petroleum Geologists Bulletin, 69, 1195-1207.
  14. Ghadeer, S.G. and Macquaker, J.H.S., 2011, Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. Journal of the Geological Society, London, 168, 1121-1132. https://doi.org/10.1144/0016-76492010-016
  15. Hein, F.J., 2015, The Cretaceous McMurray oil sands, Alberta, Canada: a world-class, tidally influenced fluvial-estuarine system-an Alberta government perspective. In: Ashworth, P.J, Best, J.L. and Parsons, D.R. (eds.), Fluvial-Tidal Sedimentology. Developments in Sedimentology, 68, Elsevier, Amsterdam, 561-621.
  16. Hein, F.J. and Cotterill, D.K., 2006, The Athabasca oil sands-a regional geological perspective, Fort McMurray area, Alberta, Canada. Natural Resources Research, 15, 85-102. https://doi.org/10.1007/s11053-006-9015-4
  17. Hein, F.J., Cotterill, D.K. and Berhane, H., 2000, An Atlas of Lithofacies of the McMurray Formation, Athabasca Oil Sands Deposit, Northeastern Alberta: Surface and Subsurface. Earth Sciences Report 2000-07, Alberta Energy and Utilities Board/Alberta Geological Survey, Edmonton, 216 p.
  18. Hovikoski, J., Therkelsen, J., Nielsen, L.H., Bojesen-Koefoed, J.A., Nytoft, H.P., Petersen, H.I., Abatzis, I., Tuan, H.A., Phuong, B.T.N., Dao, C.V. and Fyhn, M.B.W., 2016, Density-flow deposition in a fresh-water lacustrine rift basin, Paleogene Bach Long Vi Graben, Vietnam. Journal of Sedimentary Research, 86, 982-1007. https://doi.org/10.2110/jsr.2016.53
  19. Hubbard, S.M., Smith, D.G., Nielsen, H., Leckie, D.A., Fustic, M., Spencer, R.J. and Bloom, L., 2011, Seismic geomorphology and sedimentology of a tidally influenced river deposit, Lower Cretaceous Athabasca oil sands, Alberta, Canada. American Association of Petroleum Geologists Bulletin, 95, 1123-1145. https://doi.org/10.1306/12131010111
  20. Ichaso, A.A. and Dalrymple, R.W., 2009, Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology, 37, 539-542. https://doi.org/10.1130/G25481A.1
  21. Jo, H.R. and Ha, C.G., 2013a, Stratigraphic architecture of fluvial deposits of the Cretaceous McMurray Formation, Athabasca oil sands, Alberta, Canada. Geosciences Journal, 17, 417-427. https://doi.org/10.1007/s12303-013-0041-z
  22. Jo, H.R. and Ha, C.G., 2013b, Basal water-bearing zone of the oil-sands deposits of the Cretaceous McMurray Formation at Christina Lake, Alberta, Canada. Geosciences Journal, 17, 445-453. https://doi.org/10.1007/s12303-013-0058-3
  23. Leckie, D.A. and Smith, D.G., 1992, Regional setting, evolution, and depositional cycles of the Western Canada foreland basin. In: Macqueen, R.W. and Leckie, D.A. (eds.), Foreland Basins and Fold Belts. American Association of Petroleum Geologists, Memoir, 55, 9-46.
  24. Lee, H.S., Park, C.H., Shinn, Y.J., Lee, H.Y., Jeong, S.H., Hong, S.K., Yang, I.H., Kim, G.H., Shin, H., Rhee, C.W., Park, E.K., Jeong, J.A. and Jo. H.R., 2015, Technology in Oil Sands Development. Korea Institute of Geoscience and Mineral Resources, 240 (in Korean).
  25. Mackay, D.A. and Dalrymple, R.W., 2011, Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada. Journal of Sedimentary Research, 81, 901-920. https://doi.org/10.2110/jsr.2011.74
  26. McAnally, W.H., Friedrichs, C., Hamilton, D., Hayter, E., Shrestha, P., Rodriguez, H., Sheremet, A. and Teeter, A., 2007, Management of fluid mud in estuaries, bays, and lakes. I: present state of understanding on character and behavior. Journal of Hydraulic Engineering, 133, 9-22. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(9)
  27. Mossop, G.D. and Flach, P.D., 1983, Deep channel sedimentation in the Lower Cretaceous McMurray Formation, Athabasca Oil sands, Alberta. Sedimentology, 30, 493-509. https://doi.org/10.1111/j.1365-3091.1983.tb00688.x
  28. Musial, G., Reynaud, J.-Y., Gingras, M.K., Fenies, H., Labourdette, R. and Parize, O., 2012, Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada). Sedimentary Geology, 279, 156-172. https://doi.org/10.1016/j.sedgeo.2011.04.020
  29. Nardin, T.R., Feldman, H.R. and Carter, B.J., 2013, Stratigraphic architecture of a large-scale point-bar complex in the McMurray Formation: Syncrude's Mildred Lake Mine, Alberta, Canada. In: Hein, F.J., Leckie, D., Larter, S. and Suter, J.R. (eds.), Heavy-Oil and Oil-Sand Petroleum Systems in Alberta and Beyond. AAPG Studies in Geology 64, 273-311.
  30. Plint, A.G., 2014, Mud dispersal across a Cretaceous prodelta: storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies. Sedimentology, 61, 609-647. https://doi.org/10.1111/sed.12068
  31. Ranger, M.J. and Pemberton, S.G., 1997, Elements of a stratigraphic framework for the McMurray Formation in south Athabasca area, Alberta. In: Pemberton, S.G. and James, D.P. (eds.), Petroleum Geology of the Cretaceous Mannville Group, Western Canada. Canadian Society of Petroleum Geologists, Memoir, 18, 263-291.
  32. Shinn, Y.J., Lee, H.S., Kwon, Y.K. and Kwak, W.J., 2014, Lithofacies distribution and depositional environment in the Lower Cretaceous McMurray Formation, BlackGold Lease, northern Alberta: implications for geometry and distribution of oil sand reservoirs. Geosciences Journal, 18, 325-337. https://doi.org/10.1007/s12303-014-0006-x
  33. Soyinka, O.A. and Slatt, R.M., 2008, Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming. Sedimentology, 88, 1117-1133.
  34. Stockmal, G.S., Cant, D.J. and Bell, J.S., 1992, Relationship of the stratigraphy of the Western Canada foreland basin to Cordilleran tectonics: insights from geodynamic models. In: Macqueen, R.W. and Leckie, D.A. (eds.), Foreland Basins and Fold Belts. American Association of Petroleum Geologists, Memoir, 55, 107-124.
  35. Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G., 2012, Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59, 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
  36. Wang, Z. and Larsen, P., 1994, Turbulent structure of water and clay suspensions with bed load. Journal of Hydraulic Engineering, 120, 577-600. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:5(577)
  37. Wightman, D.M. and Pemberton, S.G., 1997, The Lower Cretaceous (Aptian) McMurray Formation: an overview of the Fort McMurray area, northeastern Alberta. In: Pemberton, S.G. and James, D.P. (eds.), Petroleum Geology of the Cretaceous Mannville Group, Western Canada. Canadian Society of Petroleum Geologists, Memoir, 18, 312-344.