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Abstract: Reservoir Characterization (RC) using 3-D seismic attributes analysis can provide 
properties of the oil sand reservoirs, beyond seismic resolution. For example, distributions and 
temporal bed thicknesses of reservoirs could be characterized by Spectral Decomposition (SD) 
and additional seismic attributes such as wavelet classification. 
To extract physical properties of the reservoirs, we applied 3-D seismic attributes analysis to the oil 
sand reservoirs in McMurray formation, in BlackGold Oilsands Lease, Alberta Canada. Because of 
high viscosity of the bitumen, Enhanced Oil Recovery (EOR) technology will be necessarily 
applied to produce the bitumen in a steam chamber generated by Steam Assisted Gravity Drainage 
(SAGD). To optimize the application of SAGD, it is critical to identify the distributions and 
thicknesses of the channel sand reservoirs and shale barriers in the promising areas. 
By 3-D seismic attributes analysis, we could understand the expected paleo-channel and 
characteristics of the reservoirs. However, further seismic analysis (e.g., elastic impedance 
inversion and AVO inversion) as well as geological interpretations are still required to improve 
the resolution and quality of RC. 
 
Keywords: EOR, SAGD, reservoir characterization, 3-D seismic attributes analysis, spectral 
decomposition, wavelet classification 
 
1. INTRODUCTION 
 
1.1   Background to This Study 
McMurray formation contains oil sand reservoirs, in BlackGold Lease, Alberta Canada. 
Because of high viscosity of bitumen, Enhanced Oil Recovery (EOR) technology of Steam 
Assisted Gravity Drainage (SAGD) will be applied to generate steam chambers to lower 
viscosity of the bitumen and make it producible. Since the SAGD is expensive and 
complicated, an optimal production technique is indispensible to maximize the production rate. 
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To optimize the application of SAGD, it is critical to identify the distribution and thickness of the 
channel sand reservoirs and shale barriers in the promising areas (Pooladi-Darvish and Mattar, 
2002), because the oil sand reservoirs in the block have relatively thin and complex 
depositional facies such as meandering fluvial channels. Therefore, high resolution of reservoir 
characterization (RC) is required to design the SAGD. However, the number of wells is more 
than 150 in the area of 39 km2 in BlackGold Lease. This means that the average resolution of 
RC using well data only is 454 m ×  454 m.  
Generally, RC using only well data has a limitation on resolution. However, the resolution of RC 
can be improved by using additional seismic data and attributions. For example, the resolution 
of RC using both seismic and well data could be improved from 454 m ×  454 m to 20 m ×  20 
m, depending on the seismic acquisition and data processing parameters in the block. We 
perform 3-D seismic attributes analysis for the RC to extract the properties beyond seismic 
resolution. For example, the distribution and thickness of the channel sand reservoirs and shale 
barriers in McMurray formation are characterized by SD and additional seismic attributes such 
as wavelet classification (Dubrule et al., 1998; Partyka et al., 1999). 
 
1.2   Summary of the Block 
BlackGold Oilsands Lease is located 140 km southeast of Fort McMurray in the Athabasca Oil 
Sands region of northern-eastern of Alberta, Canada (see Fig. 1) and its recoverable bitumen 
reserves are expected to be more than 200 million bbls. BlackGold Oilsands Lease covers 39 
km2 and KNOC (Korea National Oil Corporation) has the operatorship and 100 % of working 
interest of the block. We acquired BlackGold Oilsands Lease from Newmont Mining 
Corporation in August 2006.  
Since August 2006, KNOC acquired 3-D seismic data in the area of 25 km2 for further 
evaluation, where there are more than 150 wells drilled by both KNOC and former operator. 
Recently, we are expanding the facilities so that more than 20,000 bbls can be produced a day, 
which will ultimately raise our daily production rate to 30,000 bbls. This is our basic plan and 
target in the foreseeable future. 
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Fig. 1. Location Map of the BlackGold Lease Block in Alberta, Canada. 

 
2. SPECTRAL DECOMPOSITION 
 
SD using Gabor-Morlet complex wavelet transform, Discrete Fourier Transform (DFT), 
Continuous Wavelet Transform (CWT) and many other time/frequency transforms is applied 
to extract some meaningful information about temporal bed thickness and geological 
distribution from 3D seismic data. In this study, Gabor-Morlet complex wavelet transform has 
been used to transform 3-D time-domain seismic data to the time/frequency domain. 
 
2.1   Gabor-Morlet Complex Wavelet Transform 
Complex-valued Gabor wavelet is represented as a product of a complex sinusoidal function 
and a Gaussian envelope in the time domain (Gabor, 1946):  
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where w(t) is a Gaussian window, u is the time delay (translation), σ is the spread in the time 
axis (scale), ω is the central angular frequency (modulation), and φ is the phase shift. Using the 
Gabor wavelet, it is possible to define a seismic trace f(t) as follows 
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where an is the amplitude of the nth wavelet gγ n , R(N)f is the residual with R(0)f = f. 
For seismic reflection signal analysis, the complex Gabor wavelet (1), which is called Morlet 
wavelet, is used as a basic signal model. This Morlet wavelet is suitable for energy and 
frequency quantification of seismic data, and particularly appropriate for resolution studies 
(e.g., spectral decomposition) of acoustic waves propagating through porous media. 
A Morlet wavelet m(t) centered at the abscissa u can be defined as (Morlet et al. 1982a, b) 
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where ωm is the mean angular frequency, and σ is a constant value that controls the wavelet 
width. The Fourier transform of m(t) is given by 
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We then have an analytic expression for the time-frequency amplitude spectrum as follows 
 

( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

2

22

22

222 2ln
2ln4

21
1

0 2ln2
, n

nn

n

nn

n

ut

n

n
N

n

n ee
g
atAf σ

ω
πω

ωωσπ

γ ω
σπω

,              (5) 



Reservoir Characterization using 3-D Seismic Data in BlackGold Oilsands Lease, Alberta Canada

년 한국지구물리 물리탐사학회 특별 심포지엄 논문집2009

39

where ωn≡ ωm,n is the mean frequency of the nth wavelet, and 
n

gγ  is a normalization factor 

(Wang, 2007). 
 
2.2   Theory of SD 
SD, which makes it possible to analyze spectral characteristics related to geological 
information, has been widely applied to 3D seismic survey data acquired for thin bedded 
reservoirs, distributed channel, turbidite and reef related plays. The main concept supporting 
SD is that a reflection from a (thin) bed (e.g., channel sand and shale barriers in McMurray 
formation) has a distinctive characteristic in the frequency domain, which indicates the 
temporal bed thickness. The seismic wavelet, however, typically spans multiple subsurface 
layers as well as one simple thin bed (see Fig. 2). 
 

 
Fig. 2. Thin-bed spectral analysis (Partyka et al., 1999). 

 
Note that amplitude spectrum of long time-windowed data is significantly different from that 
of short time-windowed data. Long time-windowed data yield a broad-band amplitude 
spectrum (e.g., “Fig. 3”), whereas amplitude spectrum of short time-windowed data represents 
a local interference pattern as well as the effect of the shape of wavelet from which the 
acoustic properties and thickness of the layers can be inferred (e.g., “Fig. 4”). With a few 
exceptions (e.g., cyclothems and sabkhas), the amplitude spectrum of long time-windowed 
data statistically results in randomized interference patterns of individual thin beds within the 
window. Thus, the long time-windowed data gives whitened or flattened amplitude spectrum. 
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Finally, the convolution of a source wavelet with a random geologic section creates an 
amplitude spectrum that resembles the wavelet (see Fig. 3). 
Amplitude spectrum of the short time-windowed data is dependent on the acoustic property and  

 

 
Fig. 3. Long-window spectral decomposition and its relationship to the convolutional model 
(Partyka et al., 1999). 
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Fig. 4. Short-window spectral decomposition and its relationship to the convolutional model 
(Partyka et al., 1999). 
 
thickness of the layers. In a bed, the physical properties act as a local filter on the reflecting 
wavelet, thereby attenuating its spectrum. The resulting amplitude spectrum is not white and 
represents the interference pattern within the window (see Fig. 4) (Partyka et al., 1999). 
As a short time-window transform, we apply the Gabor-Morlet complex wavelet transform, 
which provide amplitude spectrum and phase spectrum in the time/frequency domain. 
 

3. WAVELET CLASSIFICATION 
 
The Neuronal method (Ornstein, 1965; Mohaghegh, 2000) is an artificial intelligence process 
that excels at pattern recognition. The Neuronal method can be used for all kinds of seismic 
data types. We use a user-defined training set to define the kernels of Facies map using neural 
networks (e.g., “Fig. 5”). Following three parameters are required at the processing stage using 
Paradigm software (Paradigm B.V., 2009). 
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Fig. 5. Example of Classified Wavelets Displayed by Paradigm Software. 

 
3.1   Number of Classes 
The number of different trace classes or wavelets is given to be encountered over the whole 
survey area. Wavelet classification can generally be applied to classify geological facies on the 
basis of the shape or physical properties of wavelet. However, it does not provide any 
geological information directly.  
 
3.2   Size of the Training Set 
The X and Y dimensions are the sampling intervals. For example, X=4 means that one out of 
four traces will be used in X dimension. 
 
3.3   Number of Iterations 
This determines how many times the neural network should be calculated to improve the 
relevance of classification in relation to the data of the training set.  
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4. APPLICATION 
 

To define the distributions and temporal bed thicknesses of the reservoirs and shale barriers, we 
applied SD and wavelet classification to the McMurray formation. The thickness of the reservoir 
in the McMurray formation varies from 10 m to 30 m approximately, thus, the attribute map from 
SD was derived for stacking frequencies ranging from 15 to 50 Hz. More specific range of 
stacking frequency was defined by parameter tests including the frequency range and transform. 
It is important to determine which part of the trace (e.g., time window) should be used for 
wavelet classification. The time window can cover either the top or the bottom boundary of the 
formation that we are interested in. Both of them can be included in the time window. For 
example, when the target is McMurray formation, the time window used for wavelet 
classification can be designed to cover from 5 ms above the upper boundary to 5 ms below the 
bottom boundary of McMurray formation. Results obtained for different time windows show 
different characteristics. Wavelet classification can be applied to each or the combination of 
stacked sections, acoustic impedance volumes and other attributions.  
 

5. CONCLUSION 
 

We tested SD for various ranges of frequency, time and depth, and many sort of attribute analysis 
for this study. From the results of this study, we could confirm that the resolution of the RC can 
be improved by using both 3-D seismic data and well data, and we characterized the distributions 
and temporal bed thicknesses of the reservoirs and shale barriers. Furthermore, we also identified 
paleo-channel systems and the characteristics of the reservoirs using 3-D seismic data including 
3-D seismic attributions. Finally, we expect that the results of this study could help us to 
determine the regions where we can apply SAGD or where we cannot apply SAGD. 
 

6. DISCUSSION 
 

Recently, AVO inversion and attributes has been applied to the oil sand reservoir in Canada 
(Xu and Chopra, 2008) and they show reliable results of the application. In the BlackGold 
area, we also have 3-D and 3-component seismic data available and it is believed that the 
results of RC using the AVO inversion, AVO attributes, elastic impedance inversion as well as 
more detailed geological interpretation of the 3-D seismic data should be better. However, 
handling of S-wave data requires more time and 3-D shot gather, higher computational power. 
For these reasons, we leave the AVO inversion, AVO attributes and elastic impedance 
inversion for our future studies. 
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