• Title/Summary/Keyword: Maxwell equation

Search Result 171, Processing Time 0.024 seconds

Eigenmode of Anisotropic Planar Waveguide

  • Kweon, Gyeong-Il;Hwang-bo, Seung;Kim, Cheol-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.137-146
    • /
    • 2004
  • A new method of obtaining the eigenmode of an anisotropic planar waveguide is studied. The planar waveguide can be composed of an arbitrary number of isotropic or uniaxially anisotropic layers, provided all the optical axes arc lying in the incidence plane. Since the equation of motion for the TE mode is not different from that for the TE mode in an isotropic planar waveguide, only the equation of motion for the TM mode is of any concern. For this kind of device structure, the Maxwell's equations can be solved for one component of the electric field and one component of the magnetic field. The resulting coupled set of equations is linear in the propagation constant and the eigenmode can be easily obtained using canned numerical routines.

Finite Element Study on the Micro-cavity Effect in OLED Devices

  • Lee, Hyeongi;Hwang, Youngwook;Won, Taeyoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this paper, we discuss on the optimal design scheme of the bilayer OLED (Organic Light Emitting Diodes) with micro-cavity structure. We carried out the optical simulation on the OLED device and calculated optimal scale of devices with taking the micro-cavity effect into account. Our emission model is based upon an ensemble of radiating dipole antennas. Consequently, we applied Maxwell's equation to this sequence, followed by the analysis on the electrical behaviors of OLED device using Poisson's equation. It contains carrier injection and transportation mechanism. In this process, we found out the thickness of each layer can affect the recombination rate at the emission layer. Therefore, we optimized the thickness of each layer to improve the efficiency of the device.

Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell

  • Arefi, M.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.225-246
    • /
    • 2014
  • The present paper develops piezo-thermo-elastic analysis of a thick spherical shell for generalized functionally graded piezoelectric material. The assumed structure is loaded under thermal, electrical and mechanical loads. The mechanical, thermal and electrical properties are graded along the radial direction based on a power function with three different non homogenous indexes. Primarily, the non homogenous heat transfer equation is solved by applying the general boundary conditions, individually. Substitution of stress, strain, electrical displacement and material properties in equilibrium and Maxwell equations present two non homogenous differential equation of order two. The main objective of the present study is to improve the relations between mechanical and electrical loads in hollow spherical shells especially for functionally graded piezoelectric materials. The obtained results can evaluate the effect of every non homogenous parameter on the mechanical and electrical components.

Analysis of Bobbin Probe Signal in Steam Generator Tube with Bulge Defect (증기발생기 세관의 Bulge결함에 대한 보빈프로브 신호해석)

  • Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.702-704
    • /
    • 2003
  • In this paper, analysis of bobbin probe signal in steam generator tube with bulge defect on CE system 80 nuclear power plant is represented. The CE system 80 steam generator is adopted in ULJIN-4 nuclear power plant. From Maxwell's equation, the electromagnetic governing equation for eddy current problem is derived and by performing the finite element formulation the 3-dimensional finite element code with brick element is developed. For the ease of the comparison the numerical results with experimental ones, the calculated signals are adjusted by using the ASME standard 100[%] through hole signal. For analysis of the effect of variation of the bulge depth on the impedance signal 0.2[mm] and 0.4[mm] depth of bulge defect signals are calculated and analyzed. As the depth of the bulge defect is increased, the magnitude of the signal is increased, too. But the rate of the increment of the signal is less than that of the depth of defect. From the result of this paper, we can obtained the information of the effect of bulge defect on the impedance signal.

  • PDF

Optimal Design to Improve Launch Velocity of Coilgun Launching System (코일건 발사 시스템의 발사속도 향상을 위한 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2018
  • Research on space development and satellites is being actively pursued. An interesting field is the study of reliable low-cost space launch vehicles. Since chemical fuel-based launching systems are expensive and take a lot of time and cost to maintain, the EML system, which is an electromagnetic force launching apparatus, is attracting attention. The EML system converts electrical energy stored in a capacitor into magnetic energy, and converts magnetic energy into mechanical kinetic energy, thereby accelerating the projectile. Although studies are actively conducted in the field, it is difficult to solve the equation because the impedance and speedance change with time and the nonlinearity is strong. Many researchers have solved this equation in a variety of methods. In this paper, the velocity analysis of the projectile was carried out by FEM (finite element method) using the commercial electromagnetic analysis program MAXWELL.

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

Physical Properties of Microencapsulated Phase Change Material Slurries (미립잠열슬러리의 물성에 관한 실험적 연구)

  • 이효진;홍재창;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.860-869
    • /
    • 2000
  • The thermal conductivity and density of slurries entrained with the particles of Micro-PCM are measured with respect to its temperatures as well as concentrations. For the thermal conductivity of slurries, a device made from P.A. Hilton (Model No. H470) is adopted. There is a well-scaled 0.3 mm gap between shells into which the slurry is injected. The temperatures of the slurry are changed to $5~25^{\circ}C$ , for which it is controled by the supplied voltage and cooling water circulated around the outer shell. The concentrations of Micro-PCM slurries are varied from 5 wt% to 50 wt%. Some general equations such as Maxwell's equation, are evaluated for their applicability with Micro-PCM slurry. As a result, it happens to be some 20% discrepancy between the experiment and the applied equations. The density measurements of Micro-PCM slurry to its temperature and concentration are peformed by hydrometer. For the experiment, tetradecane encapsulated slurry (($t_m≒6^{\circ}C$) and a mixed wax ($t_m≒50^{\circ}C$) are tested. The temperature changes of tetradecane are applied for $0^{\circ}C\;to\;$20^{\circ}C$and a mixed wax for $20^{\circ}C\;to\;$60^{\circ}C$ and its concentrations are changed from 5 wt% to 30 wt%. The results are compared with a general equation and the referenced data. For the conclusion, the experimental result and a general equation are well agreed.

  • PDF

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Correlation between Volume and Pressure of Dichloromethane using Equation of State (상태방정식을 이용한 디클로로메탄의 부피와 압력간 상관관계 연구)

  • Kwon, Woong;Kim, Jiyun;Lee, Kwonyun;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.141-146
    • /
    • 2021
  • Supercritical fluid has excellent dissolving power for various materials based on low viscosity and high diffusion coefficient and is used as solvents in various chemical processes. However, its industrial application can be very tricky because the design, especially the size of the supercritical apparatus, should be carefully chosen to optimize the cost and the production of supercritical fluidic state. And the first step of the supercritical fluid apparatus design is to choose the appropriate size of the reactor vessel to produce supercritical fluid above its critical pressure and temperature. Therefore, this study aims to analyze thermodynamic behaviors of dichloromethane based on ideal gas, van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, and Peng-Robinson equations of state. The correlation between the volume and pressure of dichloromethane at 200℃ was revealed and it can be used to design the optimized size of the supercritical apparatus for industrial production.

Numerical analysis on thermal-fluidic characteristics of the magnetic fluid in a cavity using GSMAC (GSMAC법을 이용한 밀폐된 정방형관내 자성유체의 열-유동 특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.997-1002
    • /
    • 2013
  • The article is aiming to investigate the thermal-fluidic characteristics of magnetic fluid in a cavity using GSMAC (generalized-simplified marker and cell method). The transport equations of the magnetic fluid are including the continuity equation, momentum equation and energy equation for natural convection and Maxwell equation and magnetization equation of magnetite nano-sized particles motion. In addition, the heat transfer characteristics such as temperatures and Nusselt numbers and flow characteristics such as streamlines and isotherms of the magnetic fluid were analyzed with the intensity and direction of the magnetic fields. As a result, the thermal-fluidic characteristics of the magnetic fluid in a cavity were could be controlled by the intensity and direction of the magnetic fields.